www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration durch Substitution
Integration durch Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 So 10.11.2024
Autor: Mathemurmel

Aufgabe
Berechnung von  [mm] \integral_{0}^{\bruch{\pi}{2}}{\wurzel{1-sin^{2}(x)}\*cos(x) dx} [/mm]  mit Substitution  y = [mm] 1-sin^{2}(x) [/mm]

Meine Lösung:   y(x) = [mm] 1-sin^{2}(x) [/mm]

            [mm] \bruch{dy}{dx} [/mm] = -2 [mm] \* [/mm] sin(x) [mm] \* [/mm] cos(x)
            dx =  [mm] \bruch{dy}{-2 \* sin(x) \* cos(x)} \Rightarrow [/mm]

Integrationsgrenzen:  y(0) = [mm] 1-sin^{2}(0) [/mm] = 1

                      [mm] y(\bruch{\pi}{2}) [/mm] = [mm] 1-sin^{2}(\bruch{\pi}{2}) [/mm] = 0
            
[mm] \integral_{0}^{\bruch{\pi}{2}}{\wurzel{1-sin^{2}(x)}\*cos(x) dx} [/mm]
  = [mm] \integral_{1}^{0}{\wurzel{y} \*\bruch{cos(x)}{-2 \* sin(x) \*cos(x)}dy } [/mm]
  = [mm] \integral_{0}^{1}{\wurzel{y} \*\bruch{1}{2 \* sin(x) }dy} [/mm]

und weiter weiß ich leider nicht. Herauskommen soll:  [mm] \bruch{\pi}{4}. [/mm]

        
Bezug
Integration durch Substitution: Andere Substitution
Status: (Antwort) fertig Status 
Datum: 11:28 Mo 11.11.2024
Autor: Infinit

Hallo Mathemurmel,
mit deiner Substitution kommt man nicht so weit wie mit einer anderen Ersetzung, zumindest meine ich das.
Was haben wir denn (jetzt mal ohne die Integralgrenzen)?
[mm] \int\wurzel{(1-\sin^2(x))} \cdot \cos(x) \, dx [/mm]
Bei dem Wurzelausdruck und dem quadratischen Sinus sollte dir was auffallen, nämlich [mm] \sin^2(x) + \cos^2(x) = 1 [/mm]
Damit kann man nämlich sehr schön die Wurzel substituieren, denn [mm] \wurzel{(1-\sin^2(x))} = \cos(x) [/mm]
Dann steht da nur noch [mm] \int{\cos^2(x)} \, dx [/mm] und [mm] \cos^2(x) = \bruch{1}{2} \cdot (1 + \cos(2x)} [/mm]. Diesen Ausdruck zu integrieren, das ist wirklich nicht wild und führt zu Deinem Ergebnis. Du siehst, eine Substitution ist es schon, aber Du brauchst hierbei nicht die Integrationsvariable zu ändern.
Viel Spaß dabei,
Infinit

Bezug
        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Mo 11.11.2024
Autor: Gonozal_IX

Hiho,

auch deine Substitution wäre zielführend, wenn du sie korrekt ausgeführt hättest.
Du machst einen fundamentalen Fehler, den ich immer wieder sehe:

> [mm]\integral_{0}^{\bruch{\pi}{2}}{\wurzel{1-sin^{2}(x)}\*cos(x) dx}[/mm]
> = [mm]\integral_{1}^{0}{\wurzel{y} \*\bruch{cos(x)}{-2 \* sin(x) \*cos(x)}dy }[/mm]
>  
>   = [mm]\integral_{0}^{1}{\wurzel{y} \*\bruch{1}{2 \* sin(x) }dy}[/mm]

Auf einem Schmierzettel kannst du das bis hierhin so schreiben, hast aber bereits unsaube gearbeitet, denn: Der Ausdruck ergibt, so wie er da steht, gar keinen Sinn.
Du hast hinten bereits $dy$ stehen, im Integranden taucht aber noch $x$ auf.
Das darf nach einer Substitution schlichtweg nicht mehr sein.
D.h. den "übriggebliebenen" Ausdruck [mm] $\sin(x)$ [/mm] hättest du gemäß deiner Substitution ersetzen müssen.

Du hast als Substitution gewählt: $y = [mm] 1-sin^2(x)$, [/mm] demzufolge ist (im Integrationsbereich) [mm] $\sin(x) [/mm] = [mm] \sqrt{1-y}$ [/mm]

Und du kommst auf das zu lösende Integral:
[mm]\integral_{0}^{1}{\wurzel{y} \bruch{1}{2 \sqrt{1-y} }dy}[/mm]

Aber ob das jetzt lösbarer ist, musst du entscheiden…

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de