www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration einer LN- Funktion
Integration einer LN- Funktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration einer LN- Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:11 Mi 31.01.2007
Autor: Maggons

Aufgabe
Gegeben ist die Funktion f(x)=x*(2- ln(x))

e) Wie lautet die Gleichung der Tangente an den Graphen von f in dessen Nullstelle?
f) Bestimmen sie die Stammfunktion von f.

Huhu also ich habe Probleme bei diesen 2 Teilaufgaben;

bei e) wäre es ja nur einsetzen, jedoch bekomme ich eine Tangente raus, die nicht durch den gewünschten Punkt verläuft, wenn ich einsetze :/

Also ich habe

f(x)=x * (2- ln(x))

f'(x)= 1 - ln(x)

und setze dies ja nun in die allgemeine Tangentenformel ein, die da lautet

f'(xb) * (x * xb) + f(xb), xb als Punkt, durch/ an welchen/ m die Tangente verlaufen soll.

Die Nullstelle lautet nach meinen Rechnungen [mm] e^{2}. [/mm]

in f'(x) eingesetzt ergibt sich ja dann

1-2


für (x*xb) bekommt man [mm] x*e^{2} [/mm] und der letzte Teilterm wird Null, weil ja die x- Koordinate eines Nullpunktes verwendet wird.

Daher erhalte ich letztendlich die Gleichung

t(x)= 1 - 2 * [mm] e^{2} [/mm] * x

Das kommt nur leider total nicht hin mit der Nullstelle [mm] e^{2}; [/mm] weiß jemand, wo mein Fehler liegt? :(


Dann zur f)

Ich habe bereits ein paar Ansätze von Produktintegration ausprobiert, weil ich denke, dass man Produktintegration anwenden muss, komme jedoch leider auch auf kein gescheites Ergebnis.

[mm] \integral{x * ( 2 - ln(x)) dx} [/mm]

Wenn ich ja nun zunächst die Klammer auflöse, weiß ich nicht wie ich mit 2 einzelnen Produkten umgehen muss. 2*x wäre ja einfach zu integrieren und x * ln(x) auch; nur weiß ich nicht, wie sich das - auswirkt und ob ich überhaupt die Produktintegration anwenden muss. :(

Ich hoffe auf Tipps jeglicher Art

Mit freundlichen Grüßen

Ich habe diese Frage in keinem anderen Forum gestellt.



        
Bezug
Integration einer LN- Funktion: falsche Formel
Status: (Antwort) fertig Status 
Datum: 12:19 Mi 31.01.2007
Autor: Roadrunner

Hallo Maggons!


Die allgemeine Tangentenformel in [mm] $x_b$ [/mm] lautet:   $t(x) \ = \ [mm] f'(x_b)*\left(x \ \red{-} \ x_b\right)+f(x_b)$ [/mm]


Gruß vom
Roadrunner


Bezug
        
Bezug
Integration einer LN- Funktion: Produktintegration
Status: (Antwort) fertig Status 
Datum: 12:26 Mi 31.01.2007
Autor: Roadrunner

Hallo Maggons!


Wenn Du die Klammer aumsultiplzierst, erhältst Du ja: [mm] $2x-x*\ln(x)$ [/mm] .

Dies darfst Du nun (gemäß MBSummenregel) einzeln integrieren.

Die Produktintegration (oder genauer: partielle Integration) musst Du aber nur beim 2. Term [mm] $x*\ln(x)$ [/mm] anwenden. Der 1. Teil $2*x_$ lässt sich ganz "normal" mit der MBPotenzregel integrieren.


Gruß vom
Roadrunner


Bezug
                
Bezug
Integration einer LN- Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Mi 31.01.2007
Autor: Maggons

Erstmal vielen Dank;
habe mich da bei der Formel dumm verschaut und habe die nicht noch einmal nachgeschaut....

Dann kommt als Gleichung für die Tangente

t(x) = -x + e² raus, und das stimmt auch zeichnerisch genau überein, vielen Dank zunächst dafür :)

OK nun habe ich noch ein Problem bei der f), weil ich nicht das gleiche Ergebnis rausbekomme wie mein Taschenrechner :(

Hier mein Rechenweg:

[mm] \integral{2*x-x*ln(x) dx} [/mm]

das sollte man dann ja zunächst umstellen können nach der Summenregel zu:

x² - [mm] \integral{x*ln(x) dx}, [/mm] nun würde ich ja die Produktintegration anwenden.

x² - [mm] \bruch{1}{2} [/mm] * x² * ln(x) - [mm] \integral{\bruch{1}{2} * x² * \bruch{1}{x} dx} [/mm]

Dann würde ich es auflösen zu

x² - [mm] \bruch{1}{2} [/mm] * x² * ln(x) - [mm] \bruch{1}{4} [/mm] * x²

, gekürzt dann letztendlich

[mm] \bruch{3}{4}*x^{2}-\bruch{1}{2}*x^{2}*ln(x) [/mm]

Mein Taschenrechner sagt mir jedoch:

[mm] \bruch{-x^{2}*(2*ln(x)-5)}{4} [/mm]

Also vielen Dank zunächst an Roadrunner, nur leider hab ich halt noch das Problem des falschen Ergebnisses :( Könnte nochmal jemand einen Tip geben, wo der Fehler liegt?

MfG

Bezug
                        
Bezug
Integration einer LN- Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Mi 31.01.2007
Autor: riwe

ich wpürde vermuten, du hast das MINUS vor dem 2. summanden vergessen

Bezug
                                
Bezug
Integration einer LN- Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 31.01.2007
Autor: Maggons

wo müsste da denn noch ein minus hin ... ?

Bezug
                                        
Bezug
Integration einer LN- Funktion: Klammern setzen
Status: (Antwort) fertig Status 
Datum: 19:35 Mi 31.01.2007
Autor: Roadrunner

Hallo Maggons!


Du musst bei 2. Term, dem Du mit der partiellen Integration zu Leibe rückst, Klammern setzen. Denn durch das Minuszeichen davor drehen sich nachher die Vorzeichen in der Klammer:

[mm] $\integral{2x-x*\ln(x) \ dx} [/mm] \ = \ [mm] \integral{2x \ dx}-\integral{x*\ln(x) \ dx} [/mm] \ = \ [mm] x^2-\red{\left[}\bruch{1}{2}x^2*\ln(x)-\integral{\bruch{1}{2}x^2*\bruch{1}{x} \ dx}\red{\right]} [/mm] \ = \ [mm] x^2-\bruch{1}{2}x^2*\ln(x) [/mm] \ [mm] \red{+} [/mm] \ [mm] \bruch{1}{2}*\integral{x \ dx} [/mm] \ = \ ...$


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Integration einer LN- Funktion: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 19:51 Mi 31.01.2007
Autor: Maggons

Wunderbar, nun habe ich das richtige Ergebnis :)

Nochmals vielen Dank Roadrunner, schönen Abend wünsch ich noch :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de