www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration rationaler Funktio
Integration rationaler Funktio < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration rationaler Funktio: uneigentliches Integral
Status: (Frage) beantwortet Status 
Datum: 12:37 Do 20.08.2009
Autor: basst2

Aufgabe
Bestimmen sie das uneigentliche Integral
[mm] \integral_{1}^{\infty}{\bruch{4*x + 10}{x*(x^{2}+2*x+5)} dx} [/mm]

Hallo,

Ich habe den Term bereits mit Partialbruchzerlegung zerlegt:
[mm] \bruch{4*x + 10}{x*(x^{2}+2*x+5)} [/mm] = [mm] \bruch{A}{x}+\bruch{Bx + C}{x^{2}+2x+5} [/mm]
[mm] \gdw [/mm] 4*x + 10 = [mm] x^{2}*(A [/mm] + B) + x*(2A + C) + 5 A
[mm] \Rightarrow [/mm] A=2 [mm] \wedge [/mm] B=-2 [mm] \wedge [/mm] C=0

also
[mm] \integral_{1}^{\infty}{\bruch{4x + 10}{x*(x^{2}+2*x+5)} dx} [/mm] = [mm] \integral_{1}^{\infty}{\bruch{2}{x} dx} [/mm] + [mm] \integral_{1}^{\infty}{\bruch{-2x -2 + 2}{x^{2}+2*x+5} dx} [/mm]
= [mm] \integral_{1}^{\infty}{\bruch{2}{x} dx} [/mm] - [mm] \integral_{1}^{\infty}{\bruch{2x +2}{x^{2}+2*x+5} dx} [/mm] + [mm] \integral_{1}^{\infty}{\bruch{2}{x^{2}+2*x+5}} [/mm]

Die Loesung fuer das unbestimmte Integral haette ich also. Diese waere
2*ln(|x|) - [mm] ln(|x^{2}+2x+5|) [/mm] + [mm] 2*(\bruch{2}{\wurzel{20}} [/mm] * [mm] arctan(\bruch{x+1}{2}) [/mm]

Meine Frage ist jetzt also, wie mache ich weiter um auf die Loesung fuer das uneigentliche Integral zu kommen?

[mm] \limes_{x\rightarrow\infty} [/mm] 2*ln(x) - [mm] ln(x^{2} [/mm] + 2x + 5)
= [mm] \limes_{x\rightarrow\infty} [/mm] 2*ln(x) - [mm] ln(e^{ln(x^{2}} [/mm] + 2x + 5)
= [mm] \limes_{x\rightarrow\infty} [/mm] 2*ln(x) - [mm] ln(e^{2*ln(x)} [/mm] + 2x + 5)
= [mm] \limes_{x\rightarrow\infty} [/mm] 2*ln(x) - 2*ln(x)
= 0

wenn das stimmt was mache ich dann mit dem Summand mit arctan?
[mm] \limes_{x\rightarrow\infty} [/mm] arctan(x) ist doch [mm] \bruch{\pi}{2}, [/mm] oder?

Muss ich dann einfach noch den Funktionswert an der unteren Grenze abziehen?

Mit der Hoffnung auf Hilfe,
BassT

Ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Integration rationaler Funktio: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Do 20.08.2009
Autor: leduart

Hallo basst
Den Teil deiner Rechng kann ich nicht nachvollziehen:

$ [mm] \limes_{x\rightarrow\infty} [/mm] $ 2*ln(x) - $ [mm] ln(x^{2} [/mm] $ + 2x + 5)
= $ [mm] \limes_{x\rightarrow\infty} [/mm] $ 2*ln(x) - $ [mm] ln(e^{ln(x^{2}} [/mm] $ + 2x + 5)
= $ [mm] \limes_{x\rightarrow\infty} [/mm] $ 2*ln(x) - $ [mm] ln(e^{2\cdot{}ln(x)} [/mm] $ + 2x + 5)
= $ [mm] \limes_{x\rightarrow\infty} [/mm] $ 2*ln(x) - 2*ln(x)
= 0
Die Umformung versteh ich nicht, wo blieben die 2x+5?
Das ergebnis ist richtig, aber [mm] 2lnx=lnx^2 [/mm]
damit hast du insgesamt [mm] ln(|bruch{x^2}{x^2+2x+5}) [/mm]
GW des Bruchs ist 1.
Den GW von arctan hast du richtig, und dann den Wert bei 1 abziehen ist auch richtig,
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de