www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maple" - Integration über Dreieck
Integration über Dreieck < Maple < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maple"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration über Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 Mo 02.06.2008
Autor: Denny22

Hallo an alle,

Wie lässt sich mithilfe von Maple über einem Dreieck integrieren? Genauer: Sei beispielsweise [mm] $f(x,y):=x^2+y^2$ [/mm] und $T$ das von den Punkten $(0,1),(2,0),(1,1)$ erzeugte Dreieck. Wie können wir dann mithilfe von Maple

[mm] $\int_{T}f(z)\,dz$ [/mm]

(mit [mm] $z=(x,y)\in [/mm] T$) berechnen? Es wäre sehr hilfreich, wenn jemand dazu eine Antwort hätte.

Gruß

        
Bezug
Integration über Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Mo 02.06.2008
Autor: Al-Chwarizmi


> Hallo an alle,
>  
> Wie lässt sich mithilfe von Maple über einem Dreieck
> integrieren? Genauer: Sei beispielsweise [mm]f(x,y):=x^2+y^2[/mm]
> und [mm]T[/mm] das von den Punkten [mm](0,1),(2,0),(1,1)[/mm] erzeugte
> Dreieck. Wie können wir dann mithilfe von Maple
>  
> [mm]\int_{T}f(z)\,dz[/mm]
>  
> (mit [mm]z=(x,y)\in T[/mm]) berechnen? Es wäre sehr hilfreich, wenn
> jemand dazu eine Antwort hätte.
>  
> Gruß


Hallo Denny,

in Sachen Maple kann ich nicht mitreden, zur Integration
über das dreieckige Gebiet schon. Für dein Beispiel sollte
es z.B. so klappen:

            [mm]\integral_{y=0}^{y=1}\ \ \integral_{x=2-2y}^{x=2-y}{f(x,y)\ dx\ dy}[/mm]

Gruß    al-Chw.



P.S.:  

etwas habe ich allerdings nicht mit Sicherheit verstanden:

Du schreibst einmal    [mm]f(x,y):=x^2+y^2[/mm]

aber nachher    [mm]\int_{T}f(z)\,dz[/mm]

Ich bin von einem Doppelintegral über die Dreiecksfläche
ausgegangen.

Falls   [mm]\ z = x+i y \in \IC [/mm]  und du über den Rand des
Dreiecks  integrieren willst, dann wäre dies eine ganz
andere Sache...

Bezug
                
Bezug
Integration über Dreieck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 Mo 02.06.2008
Autor: Denny22

Danke für Deine Antwort. Das sollte mir schon weiterhelfen. Du hast mit Deiner Vermutung schon Recht gehabt, d.h. meine Integration ist bezüglich des Dreiecks und nicht etwa (das aus dem Komplexen bekannte) Integral über den Dreiecksweg.

Das [mm] $z\in\IR^2$ [/mm] habe ich nur deswegen geschrieben, da ich das Dreieck im [mm] $\IR^2$ [/mm] mit $T$ bezeichnet habe. Das Integral über $T$ beinhaltet somit sowohl das Integral nach $x$ als auch nach $y$ mit [mm] $(x,y)\in [/mm] T$. Ich weiß, dass das $z$ üblicherweise in der Funktionentheorie verwendet wird und bitte die Verwechslungsgefahr zu endschuldigen.

Gruß und Danke nochmals

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maple"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de