www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration von einer eFunktio
Integration von einer eFunktio < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von einer eFunktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Mi 12.09.2007
Autor: dayscott

Aufgabe
Gesucht ist die Stammfunktion von [mm] (e^x):(e^{x+1}+1) [/mm]

bei [mm] (e^x):(e^{x}+1) [/mm] weis ich die lösung! die steht in der FS, da der Zähler Ableitung des Nenners ist. aber hier komm ich nicht weiter !
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration von einer eFunktio: korrektur
Status: (Antwort) fertig Status 
Datum: 20:50 Mi 12.09.2007
Autor: holwo

hallo,

die ableitung von [mm] e^{x+1}+1 [/mm] ist [mm] e^{x+1}, [/mm] nicht [mm] e^{x} [/mm]

überleg dir noch mal wie du mit potenzenregeln [mm] e^{x+1} [/mm] umformen kannst .. danach kannst du z.b. eine substitution machen

Bezug
                
Bezug
Integration von einer eFunktio: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Mi 12.09.2007
Autor: dayscott

e^(x+^) ist ja [mm] e*e^x [/mm]

also hab ich das ding mit e:e erweitert ! -  das "obere" e ziehe ich einfach in den zähler und fertig! schon ist mein zähler ableitung des nenners und ich kann die formel aus der FS verwenden. :)

so oder so ähnlich würdest du's doch auch machen oder?

Bezug
                        
Bezug
Integration von einer eFunktio: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Mi 12.09.2007
Autor: holwo

hallo,

ahso, du hast von 2 verschiedenen funktionen geredet ...

stimmt, bei:
[mm] \bruch{e^x}{e^x+1} [/mm] stimmts, der zähler ist ableitung der nenner

bei [mm] \bruch{e^{x}}{e^{x+1}+1} [/mm] geht das nicht so, da kannst du aber [mm] t=e^x [/mm] substituhieren

Bezug
                                
Bezug
Integration von einer eFunktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 12.09.2007
Autor: dayscott

hab jetz auf meinem blatt rumprobiert, kapiere aber nicht wie das per substitution gehen soll. ich ersetze [mm] e^x [/mm] durch t und jetzt ?

Bezug
                                        
Bezug
Integration von einer eFunktio: Integral
Status: (Antwort) fertig Status 
Datum: 21:52 Mi 12.09.2007
Autor: barsch

Hi,

du willst [mm] f(x)=\bruch{e^x}{e^{x+1}+1} [/mm] integrieren?!

[mm] \integral{\bruch{e^x}{e^{x+1}+1} dx}=\bruch{1}{e}*\integral{\bruch{e*e^x}{e^{x+1}+1} dx}=\bruch{1}{e}*\integral{\bruch{e^{x+1}}{e^{x+1}+1} dx}=\bruch{1}{e}*ln(e^{x+1}+1) [/mm]

MfG barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de