www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integrationsrechnung
Integrationsrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationsrechnung: Korrektur und Frage
Status: (Frage) beantwortet Status 
Datum: 20:07 Fr 30.03.2007
Autor: fidelio

Aufgabe
rechne folgende integralrechnung.....

hallo und schönen abend an alle,

folgendes problem stellt sich mir bei folgender integralrechnung......

[mm] \integral_{a}^{b}{f(x) dx}=\bruch{12}{(2x-5)^3}dx=12\*\bruch{(2x-5)^{-3+1}}{-3+1}=12\*\bruch{(2x-5)^{-2}}{-2}=-\bruch{12}{2}\*\bruch{1}{(2x-5)^2}=-6\*\bruch{1}{(2x-5)^2}+C [/mm]

soweit war ich der meinung ich bin richtig mit meiner rechnung......bis ich dann im lösungsheft nachgesehen habe und da stand dann folgendes:


[mm] \integral_{a}^{b}{f(x) dx}=\bruch{12}{(2x-5)^3}dx=\bruch{12}{2\*(x-2,5)^3} [/mm]  ....... usw...... die rechnung will ich jetzt nicht abschreiben......aber mein ergebnis stimmt mit dem vom buch LEIDER nicht überein und ich verstehe nicht warum die gerade bei DIESEM beispiel 2 herausgehoben haben!?!?!?!?!......bei anderen beispielen wo man auch einen wert herausheben hätte können haben die das aber nicht gemacht!!???

ich erkenne nicht warum die das so machen!!!!

als information noch am rande wenn ich für den wert x eine beliebige ziffer in mein resultat einsetze bekomme ich immer das doppelte von dem resultat aus dem lösungsheft heraus!!

bitte um eure wie immer geschätzte mithilfe da ich da leider kein licht am ende des tunnels sehe.

danke im voraus

fidelio


        
Bezug
Integrationsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Fr 30.03.2007
Autor: Kroni

Hi,

die 2 können die Autoren nicht herauszihene, wenn dann nur eine [mm] 2^3 [/mm] (s.h. Post von Norber)

Gucken wir also mal, warum du immer das doppelte Herausbekommst, als es die Lösung vorgibt:
Wenn du die 2 noch als Faktor vor dem x stehen lässt, und dann einfach sagst, dass die Stammfunktion von [mm] (2x)^{-3}=-\bruch{1}{2}*(2x)^{-2} [/mm] ist, dann hast du nicht beachtet, dass es noch eine innere Ableitung gibt:

Leite mal [mm] -\bruch{1}{2}*(2x)^{-2} [/mm] ab, und du siehst:
[mm] (2x)^{-3} [/mm] * Innere Ableitung! => [mm] (2x)^{-3}*2 [/mm]
Deine Funktion, die du integrieren solltest hatte aber (vereinfacht) die Form [mm] (2x)^{-3}. [/mm]
D.h., da ist der Faktor 2 zu viel. Um diesen zu beseitigen, musst du die dann sagen, dass die SF zu [mm] (2x)^{-3} [/mm] gleich [mm] 0,5*(-\bruch{1}{2})*(2x)^{-2} [/mm] lautet, denn dann fällt die 2 der inneren Ableitung durch den Faktor 0,5 weg.

Damit du diese Überlegung aber einfach umgehen kannst, zieht der Autor einfach die 8 aus der Klammer heraus, und sorgt damit dafür, dass die innere Ableitung der Klammer gleich Eins ist. Dadurch entfällt dann eine solche Überlegung.

In deinem Fall aber zusammengefasst, wo die 2 noch in der Klammer steht, musst du die Stammfunktion noch "zurechtbügeln", indem du den Faktor 0,5 davorhängst.
Das erklärt dann auch, warum bei deinen Ergebnissen, wenn du die Integrationsgrenzen einsetzt, immer das doppelte herauskommt, als es das Lösungsbuch sagt, da du den Faktor 0,5 vergessen hast, der dann also dein Ergebnis halbieren würde.

Das ergibt dann in deinem Fall:

[mm] \integral_{}^{}{\bruch{12}{(2x-5)^3} dx}=12*\integral_{}^{}{(2x-5)^{-3}}dx=12*(-1/2)*(2x-5)^{-2}*0,5=-3*(2x-5)^{-2} [/mm]


Viele Grüße,

Kroni

Und PS: Sry, ich stand heute etwas neben mir....

Tut mir leid

Bezug
        
Bezug
Integrationsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Fr 30.03.2007
Autor: nsche

Das Herausziehen des Faktors 2 erscheint mir zweifelhaft.
[mm] (2x-5)^{3} = (2 (x-2,5))^{3} = 2^{3}*(x-2,5)^{3}[/mm]

vG
Norbert

ich rechne mal:

[mm] \integral_{a}^{b}{\bruch{12}{(2x-5)^{3}} dx} = [/mm]
[mm] \integral_{a}^{b}{\bruch{12}{2^{3}(x-2,5)^{3}} dx} = [/mm]
[mm]\bruch{3}{2}\integral_{a}^{b}{\bruch{dx}{(x-2,5)^{3}}} [/mm]

Sub: [mm] t=\phi (x) = x-2,5; \bruch{dt}{dx} = \phi '(x)=1; dt = dx [/mm]
[mm]\bruch{3}{2} \integral_{a}^{b}{\bruch{dt}{t^{-3}}} = \bruch{3}{2*(-2)} t^{-2}| = \bruch{-3}{4} t^{-2}| [/mm]

resub:
[mm] \integral_{a}^{b}{\bruch{12}{(2x-5)^{3}} dx} = \bruch{-3}{4} (x-2,5)^{-2} | [/mm]

Wenn ich das Ergebnis differenziere, erhalte ich den Integranden. was mich beruhigt
vG
Norbert

Bezug
                
Bezug
Integrationsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Fr 30.03.2007
Autor: Kroni

Hi,

hast Recht Norbert, ich hätte mal vlt. darüber nachdenken sollen, ob das überhaupt so okay ist, die 2 dort rauszuziehen....

Heute ist wohl nicht mein Tag^^

Sláin,

Kroni


Sry, sollte keine Frage werden...wie gesagt, heute bin ich echt durch den Wind..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de