www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Integrierb. und Abschätz. Norm
Integrierb. und Abschätz. Norm < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierb. und Abschätz. Norm: Aufgabe
Status: (Frage) überfällig Status 
Datum: 15:31 So 14.12.2014
Autor: HugATree

Aufgabe
Für [mm] $f\in L^1(\mathbb{R})$ [/mm] sei [mm] $(Pf)(x):=\sum\limits_{k\in\mathbb{Z}}f(x+2\pi k),\quad x\in\mathbb{R}/2\pi\mathbb{Z}=:\mathbb{T}$. [/mm] Zeigen Sie:
a) Für [mm] $f\in L^1(\mathbb{R})$ [/mm] gilt [mm] $Pf\in L^1(\mathbb{R})$ [/mm] mit [mm] $\|Pf\|_1\leq\frac{1}{\sqrt{2\pi}}\|f\|_1$.\\ [/mm]
b) Für [mm] $f\in L^1(\mathbb{R})$ [/mm] gilt [mm] $\hat{(Pf)}(n)=\frac{1}{\sqrt{2\pi}}(\mathcal{F}_{\mathbb{R}}f)(n),\quad n\in\mathbb{Z}$, [/mm] wobei [mm] $\hat{(Pf)}\in\ell^{\infty}(\mathbb{Z})$ [/mm] die zu $Pf$ gehörigen Fourier-Koeffizienten seien.
c) Es gilt [mm] $P\in L(\mathcal{S}(\mathbb{R}), [/mm] W)$, wobei $W$ die Wiener Algebra bezeichne.
d) Für [mm] $\varphi\in\mathcal{S}(\mathbb{R})$ [/mm] gilt [mm] $\sum\limits_{k\in\mathbb{Z}}\varphi(2\pi k)=\frac{1}{\sqrt{2\pi}}\sum\limits_{k\in\mathbb{Z}}(\mathcal{F}_{\mathbb{R}}\varphi)(k)$. [/mm]


Hallo zusammen,

ich hänge gerade etwas an der Aufgabe. Was ich bis jetzt habe:

a)
Erst einmal will ich zeigen, dass unser $(Pf)(x)$ für jedes [mm] $x\in\mathbb{T}$ [/mm] wohldefiniert ist. Dafür betrachte für festes [mm] $x\in\mathbb{T}$: [/mm]
[mm] $(Pf)(x)=\sum\limits_{k\in\mathbb{Z}}f(x+2\pi k)\leq\int\limits_{\mathbb{R}}f(x+2\pi t)\mathrm{d}t$ [/mm]
Substituiere [mm] $y:=x+2\pi [/mm] t, [mm] \mathrm{d}t=\frac{1}{2\pi}\mathrm{d}y$.da $f\in L^1(\mathbb{R})$\\ [/mm]
[mm] $\Rightarrow |(Pf)(x)|\leq\frac{1}{2\pi}\left| \int\limits_{\mathbb{R}}f(y)\mathrm{d}y\right|\leq \frac{1}{2\pi}\|f\|_1<\infty$, [/mm] da [mm] $f\in L^1(\mathbb{R})$\\ [/mm]

Damit ist $Pf$ wohldefiniert.


Betrachte nun:
[mm] $\|Pf\|_1=\int\limits_{\mathbb{R}}|(Pf)(x)|\mathrm{d}x=\int\limits_{\mathbb{T}}|\sum\limits_{k\in\mathbb{Z}}f(x+2\pi k)|\mathrm{d}x\leq\int\limits_{\mathbb{T}} \sum\limits_{k\in\mathbb{Z}}|f(x+2\pi k)|\mathrm{d}x=\sum\limits_{k\in\mathbb{Z}}\int\limits_{-\pi}^\pi |f(x+2\pi k)|\mathrm{d}x$ [/mm]
Substituiere [mm] $y=x+2\pi k,\quad y(-\pi)=(2k-1)\pi,\; y(\pi)=(2k+1)\pi$: [/mm]
[mm] $\Rightarrow $\|Pf\|_1\leq \sum\limits_{k\in\mathbb{Z}}\int\limits_{(2k-1)\pi}^{(2k+1)\pi} |f(y)|\mathrm{d}y$\\ [/mm]

Außerdem gilt [mm] $\bigcup\limits_{k\in\mathbb{Z}}{[(2k-1)\pi,(2k+1)\pi]}=\mathbb{R}$ [/mm] und damit:
[mm] $\|Pf\|_1\leq \sum\limits_{k\in\mathbb{Z}}\int\limits_{(2k-1)\pi}^{(2k+1)\pi} |f(y)|\mathrm{d}y=\int\limits_{\mathbb{R}}|f(y)|\mathrm{d}y<\infty$, [/mm] da [mm] $f\in L^1(\mathbb{R})$. [/mm]
[mm] $\Rightarrow Pf\in L^1(\mathbb{T})$ [/mm]

Bei dem letzen Teil weiß ich nicht genau, wie ich die ungleichung Zeigen soll.
Kann mir hier jemand weiterhelfen?

Liebe Grüße

HugATree

        
Bezug
Integrierb. und Abschätz. Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 So 14.12.2014
Autor: HugATree

Ich glaube das Problem das ich hatte hat sich mit genauerem nachschauen unserer Definition der [mm] $L^p$ [/mm] Normen. Hier haben wir nämlich:

[mm] $\|f\|_1=(2\pi)^{-\frac{n}{2}}\int_{\mathbb{R}}|f(x)|\mathrm{d}x$ [/mm] für [mm] $f\in L^1(\mathbb{R}^n)$ [/mm] und:
[mm] $\|f\|_1=(2\pi)^{-n}\int_{\mathbb{T}}|f(x)|\mathrm{d}x$ [/mm] für [mm] $f\in L^1(\mathbb{T}^n)$ [/mm]
Damit ergibt sich dann mit meiner Abschätzung in meinem ersten Beitrag genau der Vorfaktor [mm] $\frac{1}{\sqrt{2\pi}}$ [/mm]

Bezug
        
Bezug
Integrierb. und Abschätz. Norm: Frage zu Teil (iii)
Status: (Frage) überfällig Status 
Datum: 19:58 So 14.12.2014
Autor: HugATree

also (i) und (ii) habe ich nun fertig.

Jedoch komme ich bei Teilaufgabe (iii) nicht weiter.

Die Linearität ist ja klar (mit (i)), jedoch muss ich ja noch zeigen, dass für
[mm] $f\in\mathcal{S}(\mathbb{R})$ [/mm] gilt [mm] $Pf\in [/mm] W$, also [mm] $\hat{(Pf)}\in\ell^1(\mathbb{Z})$. [/mm]
Hier fehlt mir jedoch bis jetzt noch die richtige Idee und würde mich über einen Denkanstoß freuen.

Liebe Grüße
HugATree

Bezug
                
Bezug
Integrierb. und Abschätz. Norm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Di 16.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Integrierb. und Abschätz. Norm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Di 16.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de