www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Integrierbarkeit
Integrierbarkeit < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:01 Mo 06.04.2009
Autor: Al-Chwarizmi

Liebe MitdenkerInnen,

ich möchte hier gerne eine Frage aufs Podium bringen, die
von hawkingfan in einem anderen Bezirk des Forums
gestellt worden ist:

         Link

und die ich für interessant genug für eine Diskussion in
einem eventuell etwas engeren, aber mehr spezialisierten
Kreis finde.

Gegeben ist die Funktion

f:   [mm] x\mapsto \begin{cases} 0, & \mbox{für } x\in \IR\setminus \IQ \\ \bruch{1}{q}, & \mbox{für } x=\bruch{p}{q}\in \IQ\qquad \text{(Bruch gekürzt, also p und q teilerfremd)}\end{cases} [/mm]

Es soll gezeigt werden, dass diese Funktion, obwohl sie
keineswegs stetig ist und keine Stammfunktion hat,
trotzdem auf dem Intervall [0;1] Riemann-integrierbar
(mit dem Integralwert 0) ist.

Mit der Hoffnung auf gute Antworten

Al-Chwarizmi


        
Bezug
Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:09 Mo 06.04.2009
Autor: Al-Chwarizmi

Wie die Überschrift

"IntegrierbarkeitIch möchte hii"

zustande gekommen ist, ist mir zwar etwas räzzelhapht,
aber filaicht erhoeht sickh damit die Läserkwote ein
Stügk weit ...

Bezug
                
Bezug
Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:12 Mo 06.04.2009
Autor: angela.h.b.


> Wie die Überschrift
>  
> "IntegrierbarkeitIch möchte hii"
>  
> zustande gekommen ist, ist mir zwar etwas räzzelhapht,
>  aber filaicht erhoeht sickh damit die Läserkwote ein
>  Stügk weit ...

Hallo,

ich hab' jetzt mal etwas Unkraut gejätet,

falls Du jedoch sehr an diesem originellen Titel mit seinem "hii" hängst, kannst Du Dich ja melden.

Gruß v. Angela




Bezug
        
Bezug
Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Mo 06.04.2009
Autor: angela.h.b.


> Gegeben ist die Funktion
>  
> f:   [mm]x\mapsto \begin{cases} 0, & \mbox{für } x\in \IR\setminus \IQ \\ \bruch{1}{q}, & \mbox{für } x=\bruch{p}{q}\in \IQ\qquad \text{(Bruch gekürzt, also p und q teilerfremd)}\end{cases}[/mm]
>  
> Es soll gezeigt werden, dass diese Funktion, obwohl sie
>  keineswegs stetig ist und keine Stammfunktion hat,
> trotzdem auf dem Intervall [0;1] Riemann-integrierbar
> (mit dem Integralwert 0) ist.

Hallo,

festhalten kann man ja schonmal, daß  [mm] 0\le [/mm] f  gilt.

Als Idee zur Lösung hätte ich folgendes:

man findet für f eine Folge von oberen Treppenfunktionen [mm] t_n, [/mm] deren Integral gegen 0 geht.


Ungefähr so:

sei [mm] n\in \IN. [/mm]

Es gibt in [0,1] nur endlich viele Punkte [mm] \bruch{p}{q}, [/mm] für welche q<n ist.

Um diese endlich vielen Punkte herum verteile ich Intervalle so, daß die Gesamtlänge  [mm] \bruch{1}{n} [/mm]  beträgt.

Jetzt definiere ich die Funktion [mm] t_n [/mm] auf [0,1] so, daß der Funktionswert auf diesen Intervallen =1 ist, außerhalb der Intervalle = [mm] \bruch{1}{n}. [/mm]
[mm] t_n [/mm] ist eine Treppenfunktion, es ist [mm] 0\le f\le t_n. [/mm]

Das Integral von [mm] t_n [/mm] kann man nach oben abschätzen durch   [mm] \bruch{1}{n}+ \bruch{1}{n}= \bruch{2}{n}. [/mm]

Also hat man  [mm] 0\le \integral_{0}^{1}f(x)\le \bruch{2}{n}, [/mm]

und somit ist [mm] \integral_{0}^{1}f(x)=0. [/mm]


Mich überzeugt's voll und ganz. Ich freue mich jetzt gerade darüber. Mal schauen, ob es Widerspruch gibt.

Gruß v. Angela

Bezug
        
Bezug
Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Mo 06.04.2009
Autor: fred97

Hallo,

eine Lösung mit Obersummen:  Sei [mm] \varepsilon \in [/mm] (0,1)
nach Def. von f gibt nur endlich viele x in [0,1] mit:

    $f(x) [mm] \ge \bruch{\varepsilon}{2}$. [/mm]

Die Anzahl dieser Stellen sei $N$. Sei Z = { [mm] x_0, x_1, [/mm] ..., [mm] x_n [/mm]  } eine Zerlegung von [0,1], die schon so fein ist, dass

            [mm] $d_j:= x_j-x_{j-1} \le \bruch{\varepsilon}{4N}$ [/mm] für j = 1, ..., n

gilt.

Sei [mm] M_j [/mm] := sup{ f(x): x [mm] \in [x_{j-1}, x_j] [/mm]  }


Sei

[mm] D_{\varepsilon} [/mm] = {  j: [mm] M_j \ge \bruch{\varepsilon}{2} [/mm] }

und

[mm] E_{\varepsilon} [/mm] = {  j: [mm] M_j [/mm] < [mm] \bruch{\varepsilon}{2} [/mm] }

Beachte:  die Anzahl der Elemente in [mm] D_{\varepsilon} [/mm]  ist  $ [mm] \le [/mm] 2N$


Für die Obersumme von [mm] S_f(Z) [/mm]  f bezügl. Z gilt dann:

[mm] S_f(Z) [/mm] = [mm] \summe_{j \in D_{\varepsilon}}^{}M_jd_j [/mm] + [mm] \summe_{j \in E_{\varepsilon}}^{}M_jd_j. [/mm]

Wegen 0 [mm] \le [/mm] f  [mm] \le1 [/mm] auf [0,1] folgt:

[mm] S_f(Z) \le \summe_{j \in D_{\varepsilon}}^{}d_j [/mm] + [mm] \bruch{\varepsilon}{2}\summe_{j \in E_{\varepsilon}}^{}d_j \le [/mm] $2N [mm] \bruch{\varepsilon}{4N}$+ \bruch{\varepsilon}{2}\summe_{j= 1}^{n}d_j [/mm]  = [mm] \varepsilon. [/mm]

Fazit: zu jedem [mm] \varepsilon \in [/mm] (0,1) gibt es eine Zerlegung Z von [0,1] mit:


           $0 [mm] \le S_f(Z) \le \varepsilon$ [/mm]


Bez. wir mit [mm] U_f [/mm] und [mm] O_f [/mm] das untere bzw. obere Riemannint., sogilt (da [mm] O_f [/mm] das Infimum über alle Obersummen ist):

               $0 [mm] \le U_f \le O_f \le [/mm] 0$,

also [mm] U_f [/mm] = [mm] O_f [/mm] = 0.



Damit ist f Riemann-int. und [mm] \integral_{0}^{1}{f(x) dx} [/mm] = 0.


FRED

Bezug
        
Bezug
Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Mo 06.04.2009
Autor: Al-Chwarizmi

Hallo Angela und Fred,

vielen Dank für die Antworten. So in der Weise hatte
ich mir einen Beweis auch vorgestellt. Nur war mir nicht
recht klar, wie man der (sehr starken) Forderung der
Riemann-Integrierbarkeit gerecht werden kann, dass
dann alle Folgen von Riemannschen Summen, für
welche die maximale Intervallbreite gegen Null strebt,
gegen Null streben. Dazu kann es ja nicht genügen,
eine bestimmte Art von Zerlegungen vorzugeben, bei
denen es klappt. Um alle überhaupt möglichen Zer-
legungen "unter dem Deckel zu halten", ist also die
Überlegung zentral, dass man mit dem Supremum-
Begriff solche Treppenfunktionen definieren kann, die
garantiert mindestens so grosse Summenwerte liefern
wie jede nur denkbare zulässige entsprechend feine
Zerlegung - und deren Flächen trotzdem gegen Null
streben.

Ich wollte mir zunächst einen Überblick über den Graph
der Funktion f verschaffen und dann die Mengen

    [mm] $M_q\ [/mm] =\ [mm] \{x\in\IQ\cap [0,1]\ \text{\Large{|}}\ \ x=\bruch{p}{q}\ \ mit\ \ p\in\IN\ \ und\ \ p,q\ \ teilerfremd\,\}$ [/mm]

in "Christo - Manier" separat verpacken, so, dass ich
die Gesamtfläche der Verpackung z.B. mit einer
geometrischen Reihe hätte abschätzen und dann
gegen Null schrumpfen lassen können.

Das wird aber doch ein wenig kompliziert - nebenbei
ist mir dabei aber aufgefallen, dass in der Menge der
Punkte, die den Graph von f bilden, sehr interessante
Strukturen stecken, die näher zu untersuchen sich
lohnen könnte.

Liebe Grüße    

Al

Bezug
                
Bezug
Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 Mo 06.04.2009
Autor: fred97


> Das wird aber doch ein wenig kompliziert - nebenbei
>  ist mir dabei aber aufgefallen, dass in der Menge der
>  Punkte, die den Graph von f bilden, sehr interessante
>  Strukturen stecken,

Hallo Al,

dann lass uns mal Einblick nehmen....


Gruß FRED


> die näher zu untersuchen sich
>  lohnen könnte.
>  
> Liebe Grüße    
>
> Al  


Bezug
                        
Bezug
Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:31 Mo 06.04.2009
Autor: Al-Chwarizmi

Hallo Fred,

nur mal so die ersten Beobachtungen - mehr habe ich
auch noch nicht:

Die Punkte [mm] P_n\left(\bruch{1}{n}/\bruch{1}{n}\right) [/mm] bilden eine harmonische Punktfolge
auf der Hauptdiagonalen y=x des Einheitsquadrates.
Spiegelbildlich dazu, auf der anderen Diagonalen y=1-x
liegen die Punkte [mm] Q_n\left(1-\bruch{1}{n}/\bruch{1}{n}\right). [/mm]
Alle weiteren Punkte des Graphen (mit rationalem x)
liegen im Inneren des Dreiecks ABM mit A(0/0), B(1/0), [mm] M(\bruch{1}{2}/\bruch{1}{2}). [/mm]
Betrachten wir einmal die Punkte [mm] P_2 [/mm] und [mm] P_3 [/mm] (wie oben
definiert sowie ihre Projektionen [mm] P_2' [/mm] und [mm] P_3' [/mm] auf die x-Achse.
Diese 4 Punkte bilden ein Trapez, dessen Diagonalenschnitt-
punkt der Punkt [mm] \left(\bruch{2}{5}/\bruch{1}{5}\right) [/mm] ist, der ebenfalls ein Punkt des
Graphen ist. Im Dreieck ABC (mit C(1/1)) erkennt man
eine Folge aneinander gefügter Trapeze, deren Diagonalen-
schnittpunkte [mm] \left(\bruch{2}{3}/\bruch{1}{3}\right), \left(\bruch{2}{5}/\bruch{1}{5}\right),\left(\bruch{2}{7}/\bruch{1}{7}\right) [/mm] etc. natürlich auch auf
einer Geraden liegen.

Et cetera !

Vielleicht nichts Weltbewegendes, aber doch wenigstens
irgendwie hübsch ...  und in diesem Punktgitter müsste
doch trotzdem die ganze Fülle der ganzen und der ratio-
nalen Zahlen, der Primzahleigenschaften etc. stecken !

lieben Gruß

Al

Bezug
                                
Bezug
Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Mo 06.04.2009
Autor: fred97


> Hallo Fred,
>  
> nur mal so die ersten Beobachtungen - mehr habe ich
> auch noch nicht:
>  
> Die Punkte [mm]P_n\left(\bruch{1}{n}/\bruch{1}{n}\right)[/mm] bilden
> eine harmonische Punktfolge
>  auf der Hauptdiagonalen y=x des Einheitsquadrates.
> Spiegelbildlich dazu, auf der anderen Diagonalen y=1-x
> liegen die Punkte
> [mm]Q_n\left(1-\bruch{1}{n}/\bruch{1}{n}\right).[/mm]
>  Alle weiteren Punkte des Graphen (mit rationalem x)
> liegen im Inneren des Dreiecks ABM mit A(0/0), B(1/0),
> [mm]M(\bruch{1}{2}/\bruch{1}{2}).[/mm]
>  Betrachten wir einmal die Punkte [mm]P_2[/mm] und [mm]P_3[/mm] (wie oben
>  definiert sowie ihre Projektionen [mm]P_2'[/mm] und [mm]P_3'[/mm] auf die
> x-Achse.
>  Diese 4 Punkte bilden ein Trapez, dessen
> Diagonalenschnitt-
>  punkt der Punkt [mm]\left(\bruch{2}{5}/\bruch{1}{5}\right)[/mm]
> ist, der ebenfalls ein Punkt des
> Graphen ist. Im Dreieck ABC (mit C(1/1)) erkennt man
> eine Folge aneinander gefügter Trapeze, deren Diagonalen-
>  schnittpunkte [mm]\left(\bruch{2}{3}/\bruch{1}{3}\right), \left(\bruch{2}{5}/\bruch{1}{5}\right),\left(\bruch{2}{7}/\bruch{1}{7}\right)[/mm]
> etc. natürlich auch auf
> einer Geraden liegen.
>  
> Et cetera !
>  
> Vielleicht nichts Weltbewegendes, aber doch wenigstens
>  irgendwie hübsch ...  und in diesem Punktgitter müsste
> doch trotzdem die ganze Fülle der ganzen und der ratio-
>  nalen Zahlen, der Primzahleigenschaften etc. stecken !
>  
> lieben Gruß
>  
> Al




Hallo Al,

wirklich sehr interessant. Es lohnt sich, das weiter zu verfolgen.

Gruß

FRED

Bezug
                                        
Bezug
Integrierbarkeit: so sieht es aus
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Mo 06.04.2009
Autor: Al-Chwarizmi

[Dateianhang nicht öffentlich]

Die Punkte stellen den Graph der Funktion dar. Man kann
darin viele Regelmässigkeiten entdecken. Durch die Linien
in der folgenden Figur werden sie deutlicher:

[Dateianhang nicht öffentlich]

Und noch eine etwas andere Grafik, in der die roten Punkte
gekürzte und die blauen Punkte ungekürzte Brüche bedeuten:

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Anhang Nr. 2 (Typ: gif) [nicht öffentlich]
Anhang Nr. 3 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Mo 06.04.2009
Autor: fred97

Hallo Al,

ich habe noch eine ( sehr kurze) Lösung, die allerdings Kenntnisse erfordert, die in einem Analysis I - Kurs nicht (immer) vermittelt werden:

f ist auf [0,1]  beschränkt und fast überall stetig . Nach dem Lebesqueschen Integrabilitätskriteruim ist f Riemann-integrierbar über [0,1].

Damit ist f auch Lebesque-integrierbar über [0,1] und

             $R- [mm] \integral_{0}^{1}{f(x) dx} [/mm] = L- [mm] \integral_{0}^{1}{f(x) dx}$. [/mm]

(Riemannintegral = Lebesqueintegral)


Da f =0  fast überall , ist $L- [mm] \integral_{0}^{1}{f(x) dx} [/mm] = 0$. Somit:

                  $R- [mm] \integral_{0}^{1}{f(x) dx} [/mm] =0$


Gruß FRED





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de