www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integrieren
Integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren: Stimmt das so?
Status: (Frage) beantwortet Status 
Datum: 16:56 Do 01.12.2011
Autor: LaBella

Ich wollte fragen ob folgende Aufgaben richtig sind.

1. Stammfunktion von [mm] cos\bruch{x}{2}= sin\bruch{x}{2}*0,5 [/mm]
2. Stammfunktion von cos [mm] \pi*x [/mm] = sin [mm] \pi*x *\pi [/mm]
3. [mm] \integral{x^3+sinx) dx} [/mm] = [mm] \bruch{x^4}{4}-cos+C [/mm]

4. [mm] \integral{\bruch{x+cos2x}{3} dx} [/mm] --> hier weiß ich leider nicht wie es geht..kanns mir wer erklären? wie integriert man cos2x und was is mit dem Bruchstrich? gibts beim Integrieren auch sowas wie die Quotientenregel beim Differenzieren?

        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Do 01.12.2011
Autor: leduart

Hallo
> Ich wollte fragen ob folgende Aufgaben richtig sind.
>
> 1. Stammfunktion von [mm]cos\bruch{x}{2}= sin\bruch{x}{2}*0,5[/mm]

Wenn du ableitest siehst du, dass das falsch ist: richtig ist  [mm] sin\bruch{x}{2}*2 [/mm] +C[/mm]

> 2. Stammfunktion von cos [mm]\pi*x[/mm] = sin [mm]\pi*x *\pi[/mm]

derselbe Fehler, siehst du ihn jetzt selbst?

>  3.
> [mm]\integral{x^3+sinx) dx}[/mm] = [mm]\bruch{x^4}{4}-cos+C[/mm]

richtig

> 4. [mm]\integral{\bruch{x+cos2x}{3} dx}[/mm] --> hier weiß ich
> leider nicht wie es geht..kanns mir wer erklären? wie
> integriert man cos2x und was is mit dem Bruchstrich? gibts
> beim Integrieren auch sowas wie die Quotientenregel beim
> Differenzieren?  

du teilst den Bruch in [mm] \bruch{x}{3}+\bruch{cos2x}{3} [/mm] und integrierst einzeln.
ausserdem bleiben faktoren beinm Integrieren erhalten also kannst du auch [mm] \bruch{1}{3}*(x [/mm] +cos2x) die Stammfkt innerhalb der klammer bilden und dann wieder mit bruch{1}{3} mult.
Stammfkt von cos82x) entsprechend wie bei cos(x/2)
post einfach nochmal deine korrigierten resultate.
Gruss leduart
gruss leduart


Bezug
                
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Do 01.12.2011
Autor: LaBella

okay danke erstmal!
ist dann das zweite: [mm] \bruch{sin\pi*x}{\pi}+C [/mm] ?

und das andere Ergebnis: [mm] \bruch{1}{3}*(2*sin\bruch{x}{2}+C [/mm] ??

Und eine letze Frage hätte ich noch..kann man eig. auch solche Ausdrücke wie : [mm] (p+\bruch{a}{V^2})*V-b)=RT [/mm] integrieren wenn man davon ausgeht das a,b und R konstanten sind. ? bzw wenn ja wie schaut sowas dann aus?

Bezug
                        
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Do 01.12.2011
Autor: leduart

Hallo
> okay danke erstmal!
>  ist dann das zweite: [mm]\bruch{sin\pi*x}{\pi}+C[/mm] ?

richtig  

> und das andere Ergebnis: [mm]\bruch{1}{3}*(2*sin\bruch{x}{2}+C[/mm]

das ist ganz falsch so wie du [mm] cos(\pi*x) [/mm] integriert hast, musst du cos(2*x) integrieren und das integrierte x fehlt auch)

> ??
>
> Und eine letze Frage hätte ich noch..kann man eig. auch
> solche Ausdrücke wie : [mm](p+\bruch{a}{V^2})*V-b)=RT[/mm]
> integrieren wenn man davon ausgeht das a,b und R konstanten
> sind. ? bzw wenn ja wie schaut sowas dann aus?

das ist ne gleichung, was willst du nach was integrieren?
Wenn du T als funktion von einem veränderlichen V ansiehst kannst du [mm] \integral_{V1}^{V2}{T(V)dV} [/mm]
berechnen, was aber nicht so sinnvoll ist. da es um physik geht, solltest du deine Frage präziser stellen. denn das Ergebnis wäre etwas mit der dimension [mm] °K*m^3 [/mm]
also denk ich deine Frage ist hier nicht sinnvoll, weil [mm] T*\Delta [/mm] V ja keine sinnvolle Größe ist die du integrieren wilst
du kannst dT/dV bilden, wenn du dann dT/dV kennst kannst du integrieren, vielleicht meinst du sowas?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de