www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Integritätsbereich
Integritätsbereich < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integritätsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Do 20.11.2008
Autor: kittie

Aufgabe
Sei R ein Ring. Zeigen sie: R ist Integritätsbereich [mm] \gdw \forall [/mm] x,y,z [mm] \in [/mm] R-{0} gilt: xy=xz [mm] \Rightarrow [/mm] y=z

Hallo zusammen,

komme bei der Rückrichtung leider nicht weiter. Die Hinrichtung war kein Problem.
Ich muss ja jetzt zeigen, dass [mm] \forall [/mm] x,y [mm] \in [/mm] R gilt: xy=0 [mm] \Rightarrow [/mm] x=0 [mm] \vee [/mm] y=0

und dabei irgendwie die vorraussetzung benutzen.

Kann mir da vielleicht jemand helfen. Scheint mir nicht so schwierig sein zu können, aber ich bekomms leider nicht hin.

liebe grüße die kittie

        
Bezug
Integritätsbereich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Do 20.11.2008
Autor: kittie

Keine eine Idee?
Ich komme alleine leider nicht weiter..:(

Bezug
        
Bezug
Integritätsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Fr 21.11.2008
Autor: PeterB

Hallo,

Wenn $xy=0$ und [mm] $x\neq [/mm] 0$, dann ist $xy=x0$, und du kannst die Voraussetzung anwenden.

Gruß
Peter

Bezug
                
Bezug
Integritätsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Fr 21.11.2008
Autor: kittie


> Hallo,
>  
> Wenn [mm]xy=0[/mm] und [mm]x\neq 0[/mm], dann ist [mm]xy=x0[/mm], und du kannst die
> Voraussetzung anwenden.

Aber die Vorraussetzung gilt ja nur, wenn alle Elemente aus R-{0} kommen. und das wäre ja hier dann nicht gegeben, dann kann ich das doch so nicht benutzen.oder?

Kannst du vielleicht nochmal helfen?

liebe grüße die kittie


Bezug
                        
Bezug
Integritätsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Fr 21.11.2008
Autor: PeterB


> > Hallo,
>  >  
> > Wenn [mm]xy=0[/mm] und [mm]x\neq 0[/mm], dann ist [mm]xy=x0[/mm], und du kannst die
> > Voraussetzung anwenden.
>  
> Aber die Vorraussetzung gilt ja nur, wenn alle Elemente aus
> R-{0} kommen. und das wäre ja hier dann nicht gegeben, dann
> kann ich das doch so nicht benutzen.oder?
>  
> Kannst du vielleicht nochmal helfen?
>  
> liebe grüße die kittie
>  

Du hast recht, da die Aufgabe sonst oft anders gestellt wird, hatte ich diese Bedingung übersehen. Vermutlich musst du hier zwei Fälle unterscheiden:
1) R hat maximal zwei Elemente. Dann gibt es nur zwei Ringe.
2) R hat mindestens 3 Elemente, dann gibt es in meiner Situation ein [mm] $z\in [/mm] R$ mit [mm] $z\neq [/mm] y$ und [mm] $z\neq [/mm] 0$ und dann kannst du deine Voraussetzung auf $x(y-z)=xy-xz=x0-xz=x(-z)$ anwenden.

Damit sollte es klappen.

Gruß
Peter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de