www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Integritätsring
Integritätsring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integritätsring: formale Ableitung
Status: (Frage) beantwortet Status 
Datum: 19:25 So 26.04.2009
Autor: Judyy

Aufgabe
Sei R ein Integritätsring und sei [mm] f=\summe_{i=0}^{n}a_{i}t^{i} \in [/mm] R[t].
Die formale Ableitung sei definiert als das Polynom [mm] f'=\summe_{k=1}^{n}ka_{k}t^{k-1} [/mm] = [mm] a_{1}+2a_{2}t+\ldots+na_{n}t^{n-1} [/mm]

Beweisen Sie die folgenden Aussagen für alle f, g [mm] \inR[/mm] [t] und [mm] \lambda \inR [/mm] :

(a) [mm] (\lambda [/mm] f)' = [mm] \lambda [/mm] f' und (f+g)' = f' + g'
(b) (fg)' = f'g + fg'
(c) [mm] (g^{n})' [/mm] = [mm] ng^{n-1}g' [/mm] für alle n [mm] \in\IN [/mm]

Mein Tutor meinte, ich müsse irgendwelche Axiome nachrechnen, leider weiß ich nicht welche. Kann mir da jemand weiterhelfen?
Zu (a) habe ich mir überlegt, die Definitonen einzusetzen. Komme aber nicht weiter.
Muss mein g wie die Summe von f gewählt sein, oder ist g wie [mm] \lambda [/mm] einfach ein Element aus R?
Generelle Lösungsansätze?
Schonmal Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integritätsring: Antwort
Status: (Antwort) fertig Status 
Datum: 05:11 Di 28.04.2009
Autor: felixf

Hallo!

> Sei R ein Integritätsring und sei
> [mm]f=\summe_{i=0}^{n}a_{i}t^{i} \in[/mm] R[t].
>  Die formale Ableitung sei definiert als das Polynom [mm]f'=\summe_{k=1}^{n}ka_{k}t^{k-1}[/mm] = [mm]a_{1}+2a_{2}t+\ldots+na_{n}t^{n-1}[/mm]
>  
> Beweisen Sie die folgenden Aussagen für alle f, g [mm]\inR[/mm] [t]und [mm]\lambda \inR[/mm] :
>  
> (a) [mm](\lambda[/mm] f)' = [mm]\lambda[/mm] f' und (f+g)' = f' + g'
>  (b) (fg)' = f'g + fg'
>  (c) [mm](g^{n})'[/mm] = [mm]ng^{n-1}g'[/mm] für alle n [mm]\in\IN[/mm]
>
>  Mein Tutor meinte, ich müsse irgendwelche Axiome nachrechnen, leider weiß ich nicht welche. Kann mir da jemand weiterhelfen?

Du musst nicht ``irgendwelche Axiome'' nachrechnen, sondern die oben genannten Bedingungen (a), (b) und (c).

>  Zu (a) habe ich mir überlegt, die Definitonen einzusetzen. Komme aber nicht weiter.

Schreib doch mal auf was genau du da schon hast.

Mal ein Beispiel:

Du hast $f = [mm] \sum_{i=0}^n a_i x^i$ [/mm] mit [mm] $a_i \in [/mm] R$, und [mm] $\lambda \in [/mm] R$. Dann ist [mm] $(\lambda [/mm] f)' = [mm] \left( \sum_{i=0}^n (\lambda a_i) x^i \right)' [/mm] = [mm] \sum_{i=1}^n [/mm] i [mm] (\lambda_i a_i) x^{i - 1} [/mm] = [mm] \lambda \sum_{i=1}^n [/mm] i [mm] a_i x^{i-1} [/mm] = [mm] \lambda [/mm] f'$.

> Muss mein g wie die Summe von f gewählt sein, oder ist g wie [mm]\lambda[/mm] einfach ein Element aus R?

Ja, $g$ ist ein Polynom so wie $f$. Also etwa $g = [mm] \sum_{j=0}^m b_j x^j$ [/mm] mit [mm] $b_j \in [/mm] R$. (Du kannst uebrigens ohne Einschraenkung $n = m$ waehlen.)

>  Generelle Lösungsansätze?

Mach bei (c) eine Induktion und verwende (b).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de