www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Interpolation eines Polynoms
Interpolation eines Polynoms < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Interpolation eines Polynoms: Idee
Status: (Frage) beantwortet Status 
Datum: 13:25 Fr 06.04.2007
Autor: UE_86

Aufgabe
Die Summe [mm] p(n):=\summe_{k=0}^{n} k^{2} [/mm] ist ein Polynom dritten Grades in n [mm] \ge [/mm] 0.
Bestimmen Sie dieses Polynom in der Form p(n) = [mm] a_{0} [/mm] + [mm] a_{1}n [/mm] + [mm] a_{2}n^{2} [/mm] + [mm] a_{3}n^{3} [/mm] mit Hilfe eines geeigneten Verfahrens.
Bestimmen Sie dazu genügend viele passende Stützpunkte (i,p(i)) und führen Sie die Polynominterpolation für diese Stützpunkte durch.

Hallo erstmal,
also ich muss diese Aufgabe lösen und denke habe auch schon einen Weg.
Ich denke, dass ich da wie folgt drangehen muss.
Erstmal setzte ich in [mm] p(n):=\summe_{k=0}^{n} k^{2} [/mm] für n 0,1,2,3 und erhalte damit ein Stützstellensystem.
Also in diesem Fall:
[mm] \vmat{ 0 & 1 & 2 & 3 \\ 0 & 1 & 5 & 14 } [/mm] EDIT: Hatte hier ein paar Fehler
Dieses würde ich dann mit dem Newton-Verfahren Interpolieren und hätte das Polynom.
Antwort dafür kommt noch ;-). Aber ist der Weg denn so in Ordnung oder habe ich etwas übersehen / bzw. habe einen Denkfehler?

Vielen Dank um Vorraus
MFG
UE

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. ;-)

        
Bezug
Interpolation eines Polynoms: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Fr 06.04.2007
Autor: Hund

Hallo,

also ich würde sagen das war genau die Aufgabenstellung, wenn mit Polynominterpolation das Newton-Verfahren gemeint war.

Gruß
Hund

Bezug
                
Bezug
Interpolation eines Polynoms: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Fr 06.04.2007
Autor: UE_86

Hallo danke für die Antwort, ich habe jetzt mal ein wenig weitergerechnet.
Ich habe für
[mm] a_{0}= [/mm] 0
[mm] a_{1}= [/mm] 1
[mm] a_{2}= \bruch{3}{2} [/mm]
[mm] a_{3}= \bruch{1}{3} [/mm]
Dies in die Newton´sche Interpolationsformel eingesetzt hat bei mir das Polynom
[mm] \bruch{1}{3}x^{3} [/mm] + [mm] \bruch{1}{2}x^{2} [/mm] + [mm] \bruch{1}{6}x [/mm]
ergeben.

Bezug
                        
Bezug
Interpolation eines Polynoms: Richtig!
Status: (Antwort) fertig Status 
Datum: 14:18 Fr 06.04.2007
Autor: Loddar

Hallo UE_86!


[ok] Dies entspricht auch dem Ergebnis der Quadratzahlen-Summe [mm] ($\rightarrow$[/mm]  []Summenformeln).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de