www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Intervall b Fixpunkiteration
Intervall b Fixpunkiteration < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervall b Fixpunkiteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mo 20.07.2009
Autor: PCQ

Aufgabe
Aufgabe 9:
Bestimmen Sie für jede der folgenden Funktionen ein Intervall in dem die Fixpunktiteration garantiert konvergiert. Berechnen Sie die Anzahl der Iterrationen n die nötig sind, um den gesuchten Fixpunkt [mm] x^{*} [/mm] auf 10−5 zu approimieren  
                               [mm] |x^{∗} [/mm] − [mm] x_{n} [/mm] | ≤ 10−5 .
Implementieren Sie die Fixpunktiteration und tabellieren Sie den Iterations-
verlauf.
  (a) g1 (x) = (2 − exp(x) + [mm] x^{2} [/mm] )/3
  (b) g2 (x) = [mm] 5/(x^{2} [/mm] ) + 2
  (c) g3 (x) = 5−x
  (d) g4 (x) = (sin(x) + cos(x))/2

Vorwort: es geht um ein Verständnisproblem am Beispiel der Aufgabe (d) g4

Guten Abend,
ich möchte ohne den Graphen zu zeigen das Intervall finden in der die Fixpunktiteration garantiert konvergiert.

Die Funktion lautet:
[mm] g(x)=\bruch{1}{2} [/mm] (sin(x)+cos(x))

Ich dachte ich schaue mir dazu die Ableitung an
[mm] g'(x)=\bruch{1}{2} [/mm] (cos(x)-sin(x)) und schaue für welche [mm] x\varepsilon [/mm] [a,b] gilt g'(x) [mm] \le [/mm] 0 (monoton fallend ist)

Ich würde ein Intervall wie z.B: [mm] [{\bruch{\pi}{2}}, \pi] [/mm] wählen. Ich habe ein Ergebnis (leider ohne Rechnung) in dem das Intervall [0,1] angegeben ist. Wenn ich g'(0) rechne, bekomme ich aber [mm] \bruch{1}{2} \ge [/mm] 0 raus...

Es wäre sehr nett wenn jemand mir erklären könnte wie ich das Intervall bestimmen kann (ohne Zeichnung und dann rauspicken..) und ob mein Ansatz falsch ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Intervall b Fixpunkiteration: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 Mi 22.07.2009
Autor: pelzig


>  ich möchte ohne den Graphen zu zeigen das Intervall
> finden in der die Fixpunktiteration garantiert konvergiert.
>
> Die Funktion lautet:
>  [mm]g(x)=\bruch{1}{2}[/mm] (sin(x)+cos(x))
>  
> Ich dachte ich schaue mir dazu die Ableitung an
>  [mm]g'(x)=\bruch{1}{2}[/mm] (cos(x)-sin(x)) und schaue für welche
> [mm]x\varepsilon[/mm] [a,b] gilt g'(x) [mm]\le[/mm] 0 (monoton fallend ist)

Nein, du musst ein Intervall $[a,b]$ finden, sodass [mm] $\max_{x\in[a,b]}|g'(x)|<1$ [/mm] gilt und [mm] $g([a,b])\subset[a,b]$ [/mm] ist.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de