www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Transformationen" - Intervallbestimmung
Intervallbestimmung < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervallbestimmung: Rückfrage/Klausurvorbereitung
Status: (Frage) beantwortet Status 
Datum: 13:34 Mi 10.08.2011
Autor: Roffel

Servus

Ich bin grad an Aufgaben dran, bei denen ich immer die Fläche, Volmen, den geometrischen Mittelpunkt, die Masse und die Dichte berechnen soll... sowohl in 2D als auch in 3D.
Das Prinzip habe ich so einigermaßen verstande nachdem ich jetzt paar Aufgaben dazu gerechnet habe, allerdings habe ich sehr große Probleme bei der Intervallbestimmung von den Integralen, das ist mir noch nicht logisch wie die da immer drauf kommen, desweiteren habe ich glaube ich noch Probleme die nötigen Informationen aus der Aufgabenstellung rauszuziehen....

Hier mal ein paar Beispiele die ich gerechnet habe und die ich können sollte:
a) Berechnen Sie die Fläche und den geometrischen Mittelpunkt der Menge
G = f(x, y) : 0 [mm] \le [/mm]  x [mm] \le \pi [/mm] und cos(2x) [mm] \le [/mm] y [mm] \le [/mm] 1 + sin(x)
und tragen Sie letzteren in eine Skizze von G ein.

b) Berechnen Sie die Fläche und den geometrischen Mittelpunkt der Menge
G = f(x, y) : -4 [mm] \le [/mm] x [mm] \le [/mm] 2 [mm] \wedge [/mm] -2 [mm] \le [/mm] y [mm] \le [/mm] 2 [mm] \wedge [/mm] (|x| [mm] \ge [/mm] 1 [mm] \vee [/mm] |y| [mm] \ge [/mm] 1)

c)Bestimmen Sie das Volumen der Kugelkalotte

(x, y, z) [mm] \varepsilon \IR^{3} [/mm] : [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + [mm] z^{2} \le [/mm] R, R-h [mm] \le [/mm] z
in der Kugel mit Radius R. Hinweiß: Benutze Zylinderkoordinaten!


okay bei der aufgabe a) war es mir eigentlich noch verständlich, die aufgabe sagt mir dass x werte von 0 bis pi annimmt und y von cos(2x) bis 1+sin(x) .
dann benutzt man halt die Formel und dann ist ein Doppelintegral mit dem ersten Integral von 0 bis pi und dem inneren Integral von cos(2x) bis 1+sin(x)  dydx .... das hab ich dann grad so noch geschafft und verstanden.

jetzt zu b)
was kann ich denn da alles für Informationen aus der Aufgabenstellung rausholen, es ist noch gegeben das es natürlich in 2D ist und G lässt sich als Differenz zweier einfacher Mengen schreiben. Es ist G=G1 \ G2 .
Ich hab es nur soweit verstanden, dass einmal das äußere Integral von -4 bis 2 geht und dann das Innere von -2 bis 2   .ok, soweit so gut :) das war dann G1 uund bei bei G2 ist es beides mal von -1 bis 1 , wie komm ich da drauf und ist  das auch eine Regel das G=G1 \ G2   --> Integreal G1 - integral G2 ??

die c) lass ma lieber erstmal weg sonst wird es zu viel =)

Dankeschön


Grüße  

        
Bezug
Intervallbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mi 10.08.2011
Autor: MathePower

Hallo Roffel,

> Servus
>  
> Ich bin grad an Aufgaben dran, bei denen ich immer die
> Fläche, Volmen, den geometrischen Mittelpunkt, die Masse
> und die Dichte berechnen soll... sowohl in 2D als auch in
> 3D.
>  Das Prinzip habe ich so einigermaßen verstande nachdem
> ich jetzt paar Aufgaben dazu gerechnet habe, allerdings
> habe ich sehr große Probleme bei der Intervallbestimmung
> von den Integralen, das ist mir noch nicht logisch wie die
> da immer drauf kommen, desweiteren habe ich glaube ich noch
> Probleme die nötigen Informationen aus der
> Aufgabenstellung rauszuziehen....
>  
> Hier mal ein paar Beispiele die ich gerechnet habe und die
> ich können sollte:
>  a) Berechnen Sie die Fläche und den geometrischen
> Mittelpunkt der Menge
>  G = f(x, y) : 0 [mm]\le[/mm]  x [mm]\le \pi[/mm] und cos(2x) [mm]\le[/mm] y [mm]\le[/mm] 1 +
> sin(x)
>  und tragen Sie letzteren in eine Skizze von G ein.
>  
> b) Berechnen Sie die Fläche und den geometrischen
> Mittelpunkt der Menge
>  G = f(x, y) : -4 [mm]\le[/mm] x [mm]\le[/mm] 2 [mm]\wedge[/mm] -2 [mm]\le[/mm] y [mm]\le[/mm] 2 [mm]\wedge[/mm]
> (|x| [mm]\ge[/mm] 1 [mm]\vee[/mm] |y| [mm]\ge[/mm] 1)
>  
> c)Bestimmen Sie das Volumen der Kugelkalotte
>  
> (x, y, z) [mm]\varepsilon \IR^{3}[/mm] : [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + [mm]z^{2} \le[/mm]
> R, R-h [mm]\le[/mm] z
>   in der Kugel mit Radius R. Hinweiß: Benutze
> Zylinderkoordinaten!
>  
>
> okay bei der aufgabe a) war es mir eigentlich noch
> verständlich, die aufgabe sagt mir dass x werte von 0 bis
> pi annimmt und y von cos(2x) bis 1+sin(x) .
>  dann benutzt man halt die Formel und dann ist ein
> Doppelintegral mit dem ersten Integral von 0 bis pi und dem
> inneren Integral von cos(2x) bis 1+sin(x)  dydx .... das
> hab ich dann grad so noch geschafft und verstanden.
>  
> jetzt zu b)
>  was kann ich denn da alles für Informationen aus der
> Aufgabenstellung rausholen, es ist noch gegeben das es
> natürlich in 2D ist und G lässt sich als Differenz zweier
> einfacher Mengen schreiben. Es ist G=G1 \ G2 .
>  Ich hab es nur soweit verstanden, dass einmal das äußere
> Integral von -4 bis 2 geht und dann das Innere von -2 bis 2
>   .ok, soweit so gut :) das war dann G1 uund bei bei G2 ist
> es beides mal von -1 bis 1 , wie komm ich da drauf und ist  
> das auch eine Regel das G=G1 \ G2   --> Integreal G1 -
> integral G2 ??
>  


Die Menge

[mm]-4\le x \le 2 \wedge -2 \le y \le 2[/mm]

stellt ein Rechteck dar.

In dieses Rechteck zeichnest Du die Menge

[mm]|x|\ge 1 \vee |y| \ge 1[/mm]

ein und schraffierst diese Menge.

Dann bleibt die Menge übrig für die

[mm]|x| < 1 \wedge |y| < 1[/mm]

ist.


> die c) lass ma lieber erstmal weg sonst wird es zu viel =)
>  
> Dankeschön
>  
>
> Grüße  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de