www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Intervallgrenze
Intervallgrenze < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervallgrenze: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:29 Mi 10.05.2006
Autor: FlorianJ

Aufgabe
Finden Sie einen positiven Wert k so, dass die Fläche unter der Funktion f(x) = [mm] e^{x^{2}} [/mm] über dem Intervall [0,k] den Wert 3 hat.

Guten Tag alle zusammen,
oben zitierte Aufgabe gilt es zu lösen.
Dazu habe ich mir erstmal verdeutlicht:

[mm] \integral_{0}^{k}{xe^{x^{2}} dx} [/mm] = 3

daraufhin Substitution (geht auch ohne, muss diese aber noch lernen)

[mm] x^2=u [/mm]  u'=2x  =>   I=  [mm] \bruch{1}{2} \integral_{0}^{k}{2x*e^{x^{2}} dx} [/mm]

die Form f(g(x))g'(x) gilt, somit ist meine Stammfunktion

[mm] \bruch{1}{2}e^{k^{2}} [/mm] = [mm] \bruch{1}{2}e^{2k} [/mm]

Einsetzen der Intervallgrenzen:

[mm] \bruch{1}{2} e^{2k} [/mm] - [mm] \bruch{1}{2} e^{0} [/mm] =3

[mm] \bruch{1}{2} e^{2k} [/mm] - 1 =3

[mm] \bruch{1}{2} e^{2k} [/mm] = 4

[mm] e^{2k} [/mm] = 8

[mm] \bruch{ln(8)}{2} [/mm] = k

ja ich hoffe mal das stimmt so, wenn nicht bitte korrigieren. danke!

Habe die Frage nur hier gestellt!

Gruß Florian

PS: [mm] (a^{x})' [/mm] = [mm] a^{x} [/mm]  a Element  R oder?


        
Bezug
Intervallgrenze: Korrekturen
Status: (Antwort) fertig Status 
Datum: 14:48 Mi 10.05.2006
Autor: Roadrunner

Hallo Florian!


> [mm]\integral_{0}^{k}{xe^{x^{2}} dx}[/mm] = 3

[ok]

  

> daraufhin Substitution (geht auch ohne, muss diese aber
> noch lernen)
>  
> [mm]x^2=u[/mm]  u'=2x  =>   I=  [mm]\bruch{1}{2} \integral_{0}^{k}{2x*e^{x^{2}} dx}[/mm]

[ok] Aufpassen bei bestimmten Integralen mit Substitution:

[aufgemerkt] Entweder zunächst als unbestimmtes Integral lösen, oder die Integrationsgrenzen mitsubstituieren!



> [mm]\bruch{1}{2}e^{k^{2}}[/mm] = [mm]\bruch{1}{2}e^{2k}[/mm]

Wie kommst Du auf diese Gleichheit? Das stimmt nicht!

Deine Stammfunktion lautet: [mm] $\integral{x*e^{x^2} \ dx} [/mm] \ = \ [mm] \bruch{1}{2}*e^{x^2} [/mm] + c$


> Einsetzen der Intervallgrenzen:
>  
> [mm]\bruch{1}{2} e^{2k}[/mm] - [mm]\bruch{1}{2} e^{0}[/mm] =3

[notok] Folgefehler!

Ich erhalte (bitte nachrechnen):

$k \ = \ [mm] \wurzel{\ln(7)} [/mm] \ [mm] \approx [/mm] \ 1.395$

  

> PS: [mm](a^{x})'[/mm] = [mm]a^{x}[/mm]  a Element  R oder?

Das stimmt so nicht! Für eine beliebige positive Basis $a \ [mm] \in \IR^{\red{+}}$ [/mm] gilt:

[mm] $\left[ \ a^x \ \right]' [/mm] \ = \ [mm] \left[ \ \left(e^{\ln(a)}\right)^x \ \right]' [/mm] \ = \ [mm] \left[ \ e^{x*\ln(a)} \ \right]' [/mm] \ = \ [mm] e^{x*\ln(a)}*\ln(a) [/mm] \ = \ [mm] \ln(a)*a^x$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Intervallgrenze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Mi 10.05.2006
Autor: FlorianJ

hi roadrunner und danke soweit!

[mm] e^{k^{2}} \not= e^{2k} [/mm]
hab mich mit den potenzgesetzen verheddert

nachgerechnet stimmt dein ergebnis natürlich (hatte noch im kopf eine 1 abzuziehen statt der [mm] \bruch{1}{2} [/mm]  

3,5 *2 = [mm] e^{k^{2}}.......... [/mm]

danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de