www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Intervallzerlegung, Riem. S.
Intervallzerlegung, Riem. S. < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervallzerlegung, Riem. S.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:46 Sa 12.10.2013
Autor: Kartoffelchen

Aufgabe
Bestimmen Sie Unter- und Obersumme für das Integral [mm] $\int\limits_{0}^2 (x^2+x)dx$ [/mm] indem Sie die Zerlegung Z: 0 < 1/2 < 1 < 3/2 < 2 des Intervalls [0,2] verwenden.
Bestimmen Sie auch die Riemannsche Summe $ [mm] \\varphi(f, [/mm] Z, [mm] \xi) [/mm] $, wobei die Besetzung $ [mm] \xi [/mm] aus den Mittelpunkten der Zerlegungsintervalle besteht.



Da die Integralrechnung derzeit als "Crash-Kurs" nachgeholt wird, muss ich die Aufgaben hierzu leider auch in Windeseile bearbeiten. Leider verfüge ich im Bereich Integralrechnung über nur sehr geringes Wissen..
Ich versuche daher im Folgenden etwas anschaulicher zu formulieren, natürlich mit der Bitte um Korrektur/Ergänzung usw.

1.) Zunächst soll ja eine Zerlegung stattfinden.
Wenn ich richtig sehe, dann sollen, um es für mich etwas verständlicher auszudrücken, 4 Rechtecke gleicher breite zwischen x-Achse und Funktion gelegt werden.

Für die Obersumme: Hier interessiert offenbar die "größte Höhe H" eines solchen Rechtecks, d.h. ich erhalte für die Obersumme folgende Summe:

[mm] $H_1* I_1 [/mm] + [mm] H_2 [/mm] * [mm] I_2 [/mm] + [mm] H_3 [/mm] * [mm] I_3 [/mm] + [mm] H_4 [/mm] * [mm] I_4$, [/mm]
wobei
[mm] $I_k$ [/mm] die Länge des Intervalls ist (im Beispiel konstante 0,5)

[mm] $H_1 [/mm] = f(0,5) = 0,75$
[mm] $H_2 [/mm] = f(1) = 2$
[mm] $H_3 [/mm] = f(1,5) = 3,75$
[mm] $H_4 [/mm] = f(2) = 6$

D.h.:
$Obersumme = 0,5* [mm] (H_1+H_2+H_3+H_4) [/mm] = 0,5 *12,5 = 6,25$

Für die Untersumme erhalte ich analog:
$Untersumme = 0,5* [mm] (h_1+h_2+h_3+h_4) [/mm] = ... = Obersumme - [mm] 0,5*H_4 [/mm] = 3,25$

Ist dies so korrekt?

2.) Die Riemannsche Summe soll bestimmt werden.

Wie geht das denn nun? :)

        
Bezug
Intervallzerlegung, Riem. S.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Sa 12.10.2013
Autor: Diophant

Hallo,

> Bestimmen Sie Unter- und Obersumme für das Integral
> [mm]\int\limits_{0}^2 (x^2+x)dx[/mm] indem Sie die Zerlegung Z: 0 <
> 1/2 < 1 < 3/2 < 2 des Intervalls [0,2] verwenden.
> Bestimmen Sie auch die Riemannsche Summe [mm] [mm]\\varphi(f,[/mm] Z, > [mm]\xi)[/mm] [/mm], wobei die Besetzung $ [mm]\xi[/mm] aus den Mittelpunkten der
> Zerlegungsintervalle besteht.

>

> Da die Integralrechnung derzeit als "Crash-Kurs" nachgeholt
> wird, muss ich die Aufgaben hierzu leider auch in
> Windeseile bearbeiten. Leider verfüge ich im Bereich
> Integralrechnung über nur sehr geringes Wissen..
> Ich versuche daher im Folgenden etwas anschaulicher zu
> formulieren, natürlich mit der Bitte um
> Korrektur/Ergänzung usw.

>

> 1.) Zunächst soll ja eine Zerlegung stattfinden.
> Wenn ich richtig sehe, dann sollen, um es für mich etwas
> verständlicher auszudrücken, 4 Rechtecke gleicher breite
> zwischen x-Achse und Funktion gelegt werden.

>

> Für die Obersumme: Hier interessiert offenbar die
> "größte Höhe H" eines solchen Rechtecks, d.h. ich
> erhalte für die Obersumme folgende Summe:

>

> [mm]H_1* I_1 + H_2 * I_2 + H_3 * I_3 + H_4 * I_4[/mm],
> wobei
> [mm]I_k[/mm] die Länge des Intervalls ist (im Beispiel konstante
> 0,5)

>

> [mm]H_1 = f(0,5) = 0,75[/mm]
> [mm]H_2 = f(1) = 2[/mm]
> [mm]H_3 = f(1,5) = 3,75[/mm]

>

> [mm]H_4 = f(2) = 6[/mm]

Das ist alles richtig, sieht aber dezimal geschrieben unschön aus. Verwende in der Analysis für rationale Zahlen die Darstellung als Bruch!

>

> D.h.:
> [mm]Obersumme = 0,5* (H_1+H_2+H_3+H_4) = 0,5 *12,5 = 6,25[/mm]

>

Dito. Also richtig, aber als Bruch darstellen.

> Für die Untersumme erhalte ich analog:
> [mm]Untersumme = 0,5* (h_1+h_2+h_3+h_4) = ... = Obersumme - 0,5*H_4 = 3,25[/mm]

>

> Ist dies so korrekt?

Ist korrekt, sollte aber begründet werden!

>

> 2.) Die Riemannsche Summe soll bestimmt werden.

>

> Wie geht das denn nun? :)

Das steht doch in der Aufgabenstellung. Die Höhe der Streifen soll jetzt durch die Funktionswerte in der Mitte der Teilintervalle beschrieben werden.


Gruß, Diophant
 

Bezug
                
Bezug
Intervallzerlegung, Riem. S.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Sa 12.10.2013
Autor: Kartoffelchen

Hallo,

das freut mich!

zu 2.)

Ich erhalte also für die Riemannsche Summe:

$ [mm] \frac{1}{2} [/mm] * (f(1/4) + f(3/4) + f(5/4) + f(7/4)) = [mm] \frac{1}{2} [/mm] * 9 [mm] \frac{1}{4} [/mm] = [mm] \frac{37}{8} [/mm]  $ ?



$

Bezug
                        
Bezug
Intervallzerlegung, Riem. S.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Sa 12.10.2013
Autor: Diophant

Hallo,

> Hallo,

>

> das freut mich!

>

> zu 2.)

>

> Ich erhalte also für die Riemannsche Summe:

>

> [mm]\frac{1}{2} * (f(1/4) + f(3/4) + f(5/4) + f(7/4)) = \frac{1}{2} * 9 \frac{1}{4} = \frac{37}{8} [/mm]
> ?

Ja, richtig. [ok]

Und: gibst du mir Recht, dass das jetzt schöner aussieht? ;-)


Gruß, Diophant

Bezug
                                
Bezug
Intervallzerlegung, Riem. S.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 Sa 12.10.2013
Autor: Kartoffelchen

Selbstverständlich, vor allem, da wohl oft auch unschöne Zahlen als Ergebnis auftauchen können (und werden).

Vielen Dank für die Korrektur und Hilfestellung! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de