www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Intrapolation
Intrapolation < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intrapolation: der 3 Weg
Status: (Frage) beantwortet Status 
Datum: 15:53 Mi 23.02.2005
Autor: noidea

Hallo zusammen

wie aus dem Thema oben deutlich wird handelt es sich um Intrapolation. Wir haben letzte Stunde ein Trassierungsproblem durchgefürt. Das ist was wir erarbeitet haben.


Zunächst einmal ein Graph damit das Problem klar wird

                       |
                       |
                       |
                       |
                       |
                       |                                       ------
                       |
                       |
                       |----------------------------------------------------


Ein stück liegt auf der x-Achse das andere da im Raum wie eingezeichnet(Koordinaten sind (5|2). Nun sollen die beiden Stück verbunden werden was für Möglichkeiten hat man da? Wir haben bisher 2 erarbeitet und zwar folgende


1) Ansatz einer linearen Verbindung

g(x)= m*x+b= [mm] \bruch{2}{5}x [/mm]

Somit gibt es keine Löcher in der Verbindung, d.h. die Bedingung der Stetigkeit ist erfüllt. Problem es gibt eine Abrupte Steigungsänderung.

2) Ansatz einer knickfreien Verbindung

(Differenzierbarkeit)

An den Anschlussstellen müssen sowohl die Funktionswerte als auch die Werte der Ableitung der Funktionen übereinstimmen

i)  f(0)=0       ii)   f´(0)=0
iii) f(5)=2     iiii)   f´(5)=0
__________________________________________________________________________________________________________________________

4 Bedingungen 4 Parameter

f(x)= ax³+bx²+cx+d* [mm] x^{0} [/mm]

Ansatz einer Polynomfunktion 3. Grades

i)      f(0)=a0³+b0²+c*0+d=0  darauf folgt d=0
ii)     f´(x)= 3a0²+2b*0+c =0  daraus folgt c=0
iii)    f(5) = a*125+b*25+c*5+d=2
iiii)   f´(5)= 3a*25+10b+c = 0


Vereinfachung

iii)   125a+25b=2     |*2
iiii)    75a+10b=0     |*5

250a+50b=4
375a+50b=0

Zieht man jetzt die untere Gleichung von der oberen ab, erhält man

-125a=4

daraus folgt a=- [mm] \bruch{4}{125} [/mm]

setzt man a nun ind die 125a+25b=2  Gleichung ein, kommt folgendes heraus

-4+25b=2

B=  [mm] \bruch{6}{25} [/mm]


Somit ergibt sich

- [mm] \bruch{4}{125}x³+6 \bruch{6}{25}x² [/mm]


Jetzt sind wir zu folgender Ansicht gekommen.

In den Anschlusspunkten muss die Krümmung gleich sein, wenn man nicht abrupt umlenken muss

Die Krümmung wir durch die 2. Ableitung beschrieben

d.h. f´´(0)=0
       f´´(5)= 0

ok das haben wir im Unterricht gemacht.

Nun sollen wir einen neuen Ansatz für f(x) mit i-iiii formulieren. Wer kann mir sagen was es da noch für Ansätze gibt? Ich habe wie mein Name schon sagt keine Ahnung

gruß tobbe

        
Bezug
Intrapolation: naja
Status: (Antwort) fertig Status 
Datum: 17:07 Mi 23.02.2005
Autor: FriedrichLaher

Hallo, Tobias

ganz verstehe ich's nicht wies gemeint ist
aber
man könnte natürlich auch [mm] $x^4 [/mm] + [mm] a*x^3 [/mm] + [mm] b*x^2 [/mm] + c*x + d$
ansetzen
oder ganz ohne Diff.rechnung 2 Kreisbögen.

Bezug
        
Bezug
Intrapolation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Mi 23.02.2005
Autor: Paulus

Lieber Tobias

ich denke, da nun 2 weitere Bedingungen dazugekommen sind, kann man mit dem Polynom auch um 2 Grade höher gehen.

Setze also:

[mm] $f(x)=ax^5+bx^4+cx^3+dx^2+ex+f$ [/mm]

Dann wird
[mm] $f'(x)=5ax^4+4bx^3+3cx^2+2dx+e$ [/mm]
[mm] $f''(x)=20ax^3+12bx^2+6cx+2d$ [/mm]

$f(0)=f'(0)=f''(0)=0_$ führt sofort zu f=0, e=0 und d=0.

Damit erhältst du schon mal:

[mm] $f(x)=ax^5+bx^4+cx^3$ [/mm]
[mm] $f'(x)=5ax^4+4bx^3+3cx^2$ [/mm]
[mm] $f''(x)=20ax^3+12bx^2+6cx$ [/mm]

Mit $f(5)=2_$, $f'(5)=0_$ und $f''(5)=0$ bekommst du ein Gleichungssystem, das du nach a, b und c auflösen kannst.

mit lieben Grüssen

Paul


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de