www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Inverse
Inverse < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mo 02.01.2012
Autor: quasimo

Aufgabe
Zeige, dass eine obere Dreiecksmatrix genau dann invertierbar ist, wenn alle Diagonalelemente [mm] a_{ii},i=1,...,n, [/mm] verschieden von 0 sind.

A= $ [mm] \pmat{ a_{11} & a_{12} & a_{13}& ... &a_{1n} \\ 0& a_{22}&a_{23}&...&a_{2n}\\0&0&a_{33}&\ddots&\vdots \\\vdots&\vdots&\ddots&\ddots&a_{n-1}\\0&0&...&0&a_{nn}} [/mm] $

Ich schaffe es nicht die Determinante von A auszurechenen. Habe es versucht mit dem Laplace´schen Entwicklungssatz.



        
Bezug
Inverse: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Mo 02.01.2012
Autor: Al-Chwarizmi


> Zeige, dass eine obere Dreiecksmatrix genau dann
> invertierbar ist, wenn alle Diagonalelemente
> [mm]a_{ii},i=1,...,n,[/mm] verschieden von 0 sind.
>  A= [mm]\pmat{ a_{11} & a_{12} & a_{13}& ... &a_{1n} \\ 0& a_{22}&a_{23}&...&a_{2n}\\0&0&a_{33}&\ddots&\vdots \\\vdots&\vdots&\ddots&\ddots&a_{n-1}\\0&0&...&0&a_{nn}}[/mm]
>  
> Ich schaffe es nicht die Determinante von A auszurechenen.
> Habe es versucht mit dem Laplace´schen Entwicklungssatz.

Das ist auch die richtige Idee dazu.

Dann zeige doch aber mal, wie du dabei vorgehst !

LG

Bezug
                
Bezug
Inverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Mo 02.01.2012
Autor: quasimo

A= $ [mm] \pmat{ a_{11} & a_{12} & a_{13}& ... &a_{1n} \\ 0& a_{22}&a_{23}&...&a_{2n}\\0&0&a_{33}&\ddots&\vdots \\\vdots&\vdots&\ddots&\ddots&a_{n-1}\\0&0&...&0&a_{nn}} [/mm] $

det A=?
Ich entwickle nach der ersten Spalte!
[mm] a_{11} [/mm] * [mm] \vmat{ a_{22}&a_{23}&...&a_{2n}\\0&a_{33}&\ddots&\vdots \\\vdots&\ddots&\ddots&a_{n-1}\\0&...&0&a_{nn}} [/mm]
nun nach der ersten Spalte
[mm] a_{11}*a_{22}*\vmat{a_{33}&\ddots&\vdots \\\vdots&\ddots&a_{n-1}\\0&...&a_{nn}} [/mm]
Bei mir geht das schief!

Bezug
                        
Bezug
Inverse: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Mo 02.01.2012
Autor: wieschoo


> A= [mm]\pmat{ a_{11} & a_{12} & a_{13}& ... &a_{1n} \\ 0& a_{22}&a_{23}&...&a_{2n}\\ 0&0&a_{33}&\ddots&\vdots \\ \vdots&\vdots&\ddots&\ddots&a_{n-1}\\ 0&0&...&0&a_{nn}}[/mm]
>  
> det A=?
>  Ich entwickle nach der ersten Spalte!
>  [mm]a_{11}[/mm] * [mm]\vmat{ a_{22}&a_{23}&...&a_{2n}\\ 0&a_{33}&\ddots&\vdots \\ \vdots&\ddots&\ddots&a_{n-1}\\ 0&...&0&a_{nn}}[/mm]
> nun nach der ersten Spalte
>  [mm]a_{11}*a_{22}*\vmat{a_{33}&\ddots&\vdots \\ \vdots&\ddots&a_{n-1}\\ 0&...&a_{nn}}[/mm]
> Bei mir geht das schief!

Was soll da schief gehen? Das ist schon so in Ordnung.
Du kommst doch auf das Produkt der Hauptdiagonalelemente.

Bezug
                                
Bezug
Inverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Mo 02.01.2012
Autor: quasimo

Ich komme da aber nicht ganz weiter:
$ [mm] a_{11}\cdot{}a_{22}\cdot{}\vmat{a_{33}&\ddots&\vdots \\ \vdots&\ddots&a_{n-1}\\ 0&...&a_{nn}} [/mm] $
[mm] a_{11}*a_{22}*a_{33}* \vmat{\ddots&a_{n-1}\\..&a_{nn}} [/mm]

Ich dachte vorher, dass ich jetzt die Determinante ausrechnen kann, aber es sind ja trotzdem noch endlich viele Einheiten in der Determinante.

LG

Bezug
                                        
Bezug
Inverse: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Mo 02.01.2012
Autor: angela.h.b.

Hallo,

entwickle halt immer weiter nach der ersten Spalte.

Mach's, damit Du gut kapierst, wie es geht, zunächs mal für eine [mm] 11\times [/mm] 11-Matrix oder so.

Gruß v. Angela


Bezug
                                                
Bezug
Inverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Mo 02.01.2012
Autor: quasimo

Das Prinzip vom Laplace´sche Entwicklungssatz verstehe ich ja.
Ich hoffe jetzt stimmts!
det A =det$ [mm] \pmat{ a_{11} & a_{12} & a_{13}& ... &a_{1n} \\ 0& a_{22}&a_{23}&...&a_{2n}\\0&0&a_{33}&\ddots&\vdots \\\vdots&\vdots&\ddots&\ddots&a_{n-1.n}\\0&0&...&0&a_{nn}} [/mm] $
[mm] =a_{11}*a_{22}*a_{33}....a_{n-2.n-2} [/mm] * [mm] \vmat{ a_{n-1.n-1} & a_{n-1.n} \\ 0 & a_{nn} }=a_{11}*a_{22}*a_{33}....a_{n-2.n-2} *a_{n-1.n-1}*a_{nn} [/mm]
->Diagonalelemente dürfen nicht 0 sein.

LG

Bezug
                                                        
Bezug
Inverse: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Mo 02.01.2012
Autor: angela.h.b.

Hallo,

ja, genau.
Wenn die Matrix  invertierbar ist, ist sie [mm] \not=0, [/mm] also müssen die Diagoalelemente [mm] \not=0 [/mm] sein.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de