www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Inverse bestimmen
Inverse bestimmen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:44 Fr 05.02.2010
Autor: nightsusi

Aufgabe
Zeigen Sie, dass [mm] f:\IR\to\IR [/mm] mit
f(x)=arctan(x)+exp(x)
eine Inverse [mm] f^{inv}:(a,b)\to\IR [/mm] hat . Berechnen Sie a und b

Guten Morgen nochmal

Ich habe folgendes Problem. Nach der Definition der Inversen gilt ja dass [mm] f^{inv}:f(I)\to\IR [/mm] gilt, d.h. a und b sind einfach die Grenzen des Wertebereichs von f(x).
Somit müsste dann gelten dass [mm] a=-\pi/2 [/mm] und [mm] b=\infty [/mm] oder?

Um die Umkehrfunktion zu bestimmen habe ich folgenden Ansatz gewählt:
x=arctan(y)+exp(y). Jetzt muss ich nur noch die Gleichung so umstellen, dass da y=.... rauskommt.

Klar, exp(y) bekomm ich mit ln aufgelöst, aber was mach ich dann mit arctan(y) bzw. mit dem was sich dann da ergibt wenn ich den ln daufwerfe?

Beste Grüße Susi



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverse bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Fr 05.02.2010
Autor: fred97


> Zeigen Sie, dass [mm]f:\IR\to\IR[/mm] mit
> f(x)=arctan(x)+exp(x)
>  eine Inverse [mm]f^{inv}:(a,b)\to\IR[/mm] hat . Berechnen Sie a und
> b
>  Guten Morgen nochmal
>  
> Ich habe folgendes Problem. Nach der Definition der
> Inversen gilt ja dass [mm]f^{inv}:f(I)\to\IR[/mm] gilt, d.h. a und b
> sind einfach die Grenzen des Wertebereichs von f(x).
> Somit müsste dann gelten dass [mm]a=-\pi/2[/mm] und [mm]b=\infty[/mm] oder?

Richtig. Aber um sauber zu begründen, dass dieses Intervall auch wirklich [mm] f(\IR) [/mm] ist, mußt Du noch den Zwischenwertsatz ins Spiel bringen


>  
> Um die Umkehrfunktion zu bestimmen

Das verlangt die Aufgabe doch gar nicht ...


> habe ich folgenden
> Ansatz gewählt:
>  x=arctan(y)+exp(y). Jetzt muss ich nur noch die Gleichung
> so umstellen, dass da y=.... rauskommt.




Das wird Dir nicht gelingen !

FRED

>
> Klar, exp(y) bekomm ich mit ln aufgelöst, aber was mach
> ich dann mit arctan(y) bzw. mit dem was sich dann da ergibt
> wenn ich den ln daufwerfe?
>
> Beste Grüße Susi
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Inverse bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Fr 05.02.2010
Autor: nightsusi

Vielen Dank für die Hilfe jetzt macht das Ganze Sinn!!
Da hab ich wohl zu kompliziert gedacht und wollte mich selbst übertreffen indem ich die Umkehrfunktion auch expliziet angebe ;-)

Schönes Wochenende
Susi

Bezug
                        
Bezug
Inverse bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Fr 05.02.2010
Autor: fred97


> Vielen Dank für die Hilfe jetzt macht das Ganze Sinn!!
>  Da hab ich wohl zu kompliziert gedacht und wollte mich
> selbst übertreffen indem ich die Umkehrfunktion auch
> expliziet angebe ;-)
>  
> Schönes Wochenende
>  Susi

Danke , ebenso

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de