www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Inverses Poly in Q[x]/<x^3-1>
Inverses Poly in Q[x]/<x^3-1> < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverses Poly in Q[x]/<x^3-1>: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Mo 02.02.2009
Autor: okozo

Aufgabe
f = [mm] x^2 [/mm] + 1
R = Q[x] / [mm]
Prüfen Sie, ob das gegebene Element f ein multiplikatives Inverses in dem jeweiligen Ring R hat und bestimmen Sie dieses gegebenenfalls.

Kann ich hier einfach sagen:
[f besitzt keine Nullstelle in Q] und [deg(f) = 2]
[mm] \Rightarrow [/mm] f ist irreduzibel in Q[x]
[mm] \Rightarrow [/mm] f ist keine Einheit in Q[x]
[mm] \Rightarrow [/mm] f besitzt kein multiplikatives Inverses in Q[x]
[mm] \Rightarrow [/mm] f besitzt kein multiplikatives Inverses in Q[x] / [mm] ?
Oder geht das schief wegen modulo?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverses Poly in Q[x]/<x^3-1>: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Mo 02.02.2009
Autor: SEcki


> f = [mm]x^2[/mm] + 1
>  R = Q[x] / [mm]

...

>  [mm]\Rightarrow[/mm] f besitzt kein multiplikatives Inverses in
> Q[x]

Bis hier her richtig.

>  [mm]\Rightarrow[/mm] f besitzt kein multiplikatives Inverses in
> Q[x] / [mm]

Warum sollte das stimmen? Es stimmt hier auch nicht, btw.

>  ?
>  Oder geht das schief wegen modulo?

Quasi ja - wie sieht denn er "Modulo-Raum" genau aus? Was bedeutet es in ihm, ein Inverses zu haben? Was ist denn eine Basis dieses Raumes? Hast du nun Ideen?

SEcki

Bezug
                
Bezug
Inverses Poly in Q[x]/<x^3-1>: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Di 10.02.2009
Autor: willikufalt

Wie berechne ich denn jetzt dieses Inverse zu [mm] x^{2}+1? [/mm]

Müsste doch per Polynomdivision gehen, oder?

[mm] \bruch{1}{x^{2}+1} [/mm]
[mm] =\bruch{x^{3}}{x^{2}+1} [/mm]

Das führt aber bei mir irgendwie zu nix...

Bezug
                        
Bezug
Inverses Poly in Q[x]/<x^3-1>: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Di 10.02.2009
Autor: SEcki


> Wie berechne ich denn jetzt dieses Inverse zu [mm]x^{2}+1?[/mm]
>  
> Müsste doch per Polynomdivision gehen, oder?

Hm, eher nicht.

Der Modulraum wird von den "Elementen" [m]1,x,x^2[/m] erzeugt. Setze also an [m](x^2+1)*(a*x^2+b*x+1)=1[/m] und nutze [m]x^3=1[/m] aus- Alternativ kann man mit Division mit Rest Polynome f, g bestimmen mit [m]f*(x^3-1)+g*(x^2+1)=1[/m] - dann ist die Projektion von f das Inverse.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de