www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Invertierb Matrix Nilpot NF
Invertierb Matrix Nilpot NF < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierb Matrix Nilpot NF: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:06 Di 05.11.2013
Autor: mbra771

Aufgabe
Sei [mm] $V=\IR^4$, [/mm] und sei [mm] $f:V\to [/mm] V$ definiert durch $f(v)=A*v$ wobei [mm] A=\pmat{ 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1 \\ 0&-1&0&0 \\ -2&4&-2&2 } \in M_{44}(\IR) [/mm] ist.


Es handelt sich um eine Beispielaufgabe aus meinem Script. Dabei soll ich die Nilpotente Normalform $N(p)$ von A berechnen und die Matrix S, für die gilt:

[mm] $N(p)=S^{-1}*A*S$ [/mm]

Dabei habe ich fast alle Schritte verstanden und unabhängig vom Script auch gerechnet und alles passte überein. An einem Punkt komme ich aber jetzt leider nicht weiter und kann auch nicht verstehen, warum gerade genau dieser Vektor benutzt wird.
Aber Schritt für Schritt...


Als erstes habe ich [mm] A^0,A, A^2 [/mm] und [mm] A^3 [/mm] berechnet.

[mm] A^0=I_4 [/mm]

[mm] A^1=\pmat{ 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1 \\ 0&-1&0&0 \\ -2&4&-2&2 } [/mm]

[mm] A^2=\pmat{ 1 & -2 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ -1&2&-1&1 \\ 0&0&0&0 } [/mm]

[mm] A^3=0 [/mm]

Dann habe ich die Rangpartition p von A berechnet:
p=(p1,p2,p3) mit:
[mm] p1=Rg(A^0)-Rg(A)=4-2=2 [/mm]
[mm] p2=Rg(A)-Rg(A^2)=2-1=1 [/mm]
[mm] p3=Rg(A^2)-Rg(A^3)=1-0=1 [/mm]

Somit folgt: $p=(2,1,1)$ und die dazu duale Partition $p^*=(3,1)$

Damit erstelle ich [mm] N(p)=\pmat{ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0&0&0&0 \\ 0&0&0&0 } [/mm]

Dann habe ich die Filtrierung von V bezüglich A berechnet.
Das Ergebnis hat zu meiner Freude mit meinem Script übereingestimmt und lautet:

[mm] $\{0\}\subseteq \langle \vektor{1\\0\\-1\\0},\vektor{-1\\0\\0\\-1} \rangle \subseteq \langle \vektor{-2\\-1\\0\\0},\vektor{1\\0\\-1\\0},\vektor{-1\\0\\0\\-1} \rangle \subseteq [/mm] V$

Bei mir sind die Mengen folgendermaßen benannt:

[mm] $V_0=\{0\}$ [/mm]
[mm] $V_1=\langle \vektor{1\\0\\-1\\0},\vektor{-1\\0\\0\\-1} \rangle$ [/mm]
[mm] $V_2=\langle \vektor{-2\\-1\\0\\0},\vektor{1\\0\\-1\\0},\vektor{-1\\0\\0\\-1} \rangle$ [/mm]
[mm] $V_3=V [/mm]

Jetzt suche ich mir einen Vektor, der (und da bin ich mir nicht 100%tig sicher) nicht in [mm] V_2 [/mm] liegen darf, mit dem ich eine Basis von [mm] V_3 [/mm] / [mm] V_2 [/mm] bilden kann.
Es drängte sich hier [mm] v_{13}= \vektor{1\\0\\0\\0} [/mm] auf.

Durch die duale Partition $p^*=(3,1)$ nehme ich [mm] $v_{13} [/mm] *A$ und erhalte [mm] $v_{12}=\vektor{0\\1\\0\\-2}$ [/mm] und mit [mm] $v_{12}*A=v_{13}=\vektor{1\\0\\-1\\0}$ [/mm] erhalte ich meinen nächsten Vektor.

Bis dahin verstehe ich die Vorgehensweise und habe alles unabhängig vom Scrips so gerechnet. Dann werden [mm] $v_{11},v_{12},v_{13}$ [/mm] durch einen weiteren Vektor zu einer Basis von V ergänzt.
Da S ja nun invertierbar ist, muss Rg(S)=4 sein, um auf vier linear unabhängige Vektoren zu kommen, fehlt mir also nur noch ein einziger. Ich hätte jetzt:

[mm] \vektor{0\\0\\0\\1} [/mm] genommen.

Im Script wird [mm] $v_{21}=\vektor{0\\0\\1\\1}$ [/mm] genutzt und ich verstehe nicht warum!

Wäre schön, wenn mir das jemand erklären könnte. Hab das Script jetzt schon einige male gelesen, komme aber leider nicht dahinter.
Micha

        
Bezug
Invertierb Matrix Nilpot NF: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 07.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de