www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Invertierbare Matrix
Invertierbare Matrix < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbare Matrix: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 08.06.2009
Autor: anna99

Aufgabe
Seien A,B beide n×n-Matrizen. Man zeige, dass A·B genau dann invertierbar ist, wenn
sowohl A als auch B invertierbar ist.

Ich weiss, dass man diese Aufgabe mit Determinanten und dem rang einer Matrix lösen kann, diese Themen hatten wir aber noch nicht, wie kann man diese Aufagbe sonst lösen?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:


        
Bezug
Invertierbare Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Mo 08.06.2009
Autor: Marc

Hallo,

> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:

Magst du das nochmal überdenken? Das Posten derselben Frage in einem anderen Forum, ohne dass du uns darauf hinweist, wäre nämlich ein Verstoß gegen unsere Forenregeln.

Außerdem wäre es ein erster Schritt Richtung Verstehen der Materie, dass du deine Fragen nicht in unsere Schulforen einordnest, sondern in den Uni-Bereich.

Viele Grüße,
Marc

Bezug
        
Bezug
Invertierbare Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mo 08.06.2009
Autor: cluedo

Hi,

man nennt eine quadratische Matrix $A$ invertierbar wenn zu $A$ eine quadratische Matrix [mm] $A^{-1}$ [/mm] existiert, sodass gilt [mm] $A\cdot A^{-1}=E$, [/mm] wobei $E$ die Einheitsmatrix ist. Nach deiner Voraussetzung gilt also [mm] $A\cdot A^{-1}=E$ [/mm] und [mm] $B\cdot B^{-1}=E$ [/mm] du sollst nun zeigen, dass [mm] $(AB)\cdot (AB)^{-1}=E$ [/mm] daraus folgt. Dazu benötigen wir die Regel, dass [mm] $(AB)^{-1}=B^{-1}A^{-1}$ [/mm] gilt. fangen wir also mit dem zu zeigenden an
[mm] $(AB)\cdot (AB)^{-1}=E \Leftrightarrow ABB^{-1}A^{-1}$ [/mm] wegen deiner zweiten Voraussetung ist dass [mm] $AEA^{-1}=E$, [/mm] dass wiederum ist äquivalent zu [mm] $AA^{-1}=E$ [/mm] und nach deiner ersten Voraussetzung steht dort schließlich noch $E=E$ was offenbar stimmt.

grüße

Bezug
        
Bezug
Invertierbare Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:06 Mo 08.06.2009
Autor: Marc

Hallo,

> Seien A,B beide n×n-Matrizen. Man zeige, dass A·B genau
> dann invertierbar ist, wenn
>  sowohl A als auch B invertierbar ist.
>  Ich weiss, dass man diese Aufgabe mit Determinanten und
> dem rang einer Matrix lösen kann, diese Themen hatten wir
> aber noch nicht, wie kann man diese Aufagbe sonst lösen?

Interessant für einen Antwortgeber wäre auch gewesen, wie ihr die Invertierbarkeit von Matrizen definiert habt bzw. welche Definition ihr verwenden dürft. Ich habe schon lineare Algebra Vorlesungen gesehen, da wurde es ganz anders gemacht als in der Standardliteratur, z.B. bei einem Prof. Völklein aus Essen. Bei dem muss übrigens diese Aufgabe morgen nach vierzehntägiger Bearbeitungszeit abgegeben werden (wie deine anderen Aufgaben übrigens auch -- sag' jetzt bitte nicht, dass du diese Vorlesung besuchst und dich erst in den letzten 2% der dir zur Verfügung stehenden Bearbeitungszeit damit befasst und deswegen diese Aufgaben ohne jedwede Eigenleistung hier und in andere Foren stellst, um die Lösungen abzustauben?)

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de