www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Invertierbarkeit
Invertierbarkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Sa 28.05.2005
Autor: Reaper

Hallo hab eine Verständnisfrage zu einem Beispiel:

Bsp.: Für welche a sind folgende Matrizen über dem angegeben Ring invertierbar:
[mm] \pmat{ -1 & 5 \\ 1 & a } [/mm]
det A = -a -5 = 1 .... a = -6
            -a - 5 = -1 ... a= -4
Das ist jetzt die Lösung aber woher erkenne ich dass det(A) in (R,.) invertierbar ist wenn Det = +-1?
Ich weiß es steht im Skript dass es so ist nur kann ich mir drunter nichts vorstellen..

        
Bezug
Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Sa 28.05.2005
Autor: Nam

Eine Matrix A ist invertierbar [mm]\gdw \det(A) \not=0[/mm]
Also [mm]-a -5 \not=0 \gdw a \not=-5[/mm]. Also ist die Matrix für alle a ungleich -5 invertierbar.

Warum setzt du det(A) = +- 1?
Die Matrix ist ja nicht orthogonal? Oder was meinst du?

Bezug
                
Bezug
Invertierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Sa 28.05.2005
Autor: Reaper

Hallo, na ja die Überschrift zu diesem Kapitel lautet Determinanten über Ringen.
Der entscheidene Satz lautet:
A in [mm] R^{n}_{n} [/mm] ist invertierbar(regulär) <-> det(A) ist in (R,*) ivertierbar.
Speziell ist A in [mm] Z^{n}_{n} [/mm] genau dann invertierbar, falls det(A) = +-1 ist.
Und dann haben wir einfach nur +-1 angenommen. Geht das leicht auch mit anderen Zahlen?

Bezug
                        
Bezug
Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Sa 28.05.2005
Autor: Stefan

Hallo Reaper!

Eine Matrix $A$ über einem Ring ist in der Tat genau dann invertierbar, wenn [mm] $\det(A)$ [/mm] im Ring invertierbar ist. Dies folgt aus dem Determinantenmultiplikationssatz:

[mm] $\det(A \cdot [/mm] B) = [mm] \det(A) \cdot \det(B)$, [/mm]

der auch in beliebigen Ringen gilt.

Wenn wir uns jetzt im Ring [mm] $\IZ$ [/mm] befinden, tritt die besondere Situation auf, dass es dort nur zwei invertierbare Elemente ("Einheiten") gibt, nämlich $1$ und $-1$.

Daher ist $A [mm] \in \IZ^{n \times n}$ [/mm] genau dann invertierbar, wenn [mm] $\det(A)=\pm [/mm] 1$ ist.

Viele Grüße
Stefan

Bezug
                                
Bezug
Invertierbarkeit: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:00 So 29.05.2005
Autor: Reaper

Hallo
Was wären z.b. in R die invertierbaren Elemente. Wieder +1,-1?

Bezug
                                        
Bezug
Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 So 29.05.2005
Autor: Nam

Ohne zu wissen, was R ist, kann man das natürlich nicht sagen. Was ist denn der Ring R?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de