www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Invertierbarkeit von Matrizen
Invertierbarkeit von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbarkeit von Matrizen: Äquivalentbeweise
Status: (Frage) beantwortet Status 
Datum: 11:47 Mi 26.11.2014
Autor: MeMeansMe

Aufgabe
Sei $ A [mm] \in M_n(\IR)$. [/mm] Beweise die Gleichwertigkeit von:
i) $A$ ist invertierbar.
ii) $rang(A) = n$
iii) Die Spalten von $A$ sind linear unabhängig.

Hallo,

ich werde $i) [mm] \Rightarrow [/mm] ii) [mm] \Rightarrow [/mm] iii) [mm] \Rightarrow [/mm] i)$ versuchen zu beweisen.

$i) [mm] \Rightarrow [/mm] ii)$
Dass $A$ invertierbar ist, heißt, dass die lineare Abbildung [mm] $L_A:\IR^n \to \IR^n$ [/mm] mit [mm] $L_A(x)=Ax$, [/mm] $x [mm] \in \IR^n$, [/mm] die zu der Matrix $A$ gehört, ebenfalls invertierbar ist. Diese Abbildung ist deshalb ein Isomorphismus und damit auch bijektiv. Aus dem Rangsatz folgt dann, dass

[mm] $dim(Im(L_A)) [/mm] = [mm] dim(\IR^n) [/mm] = n$.

Da $rang(A)=dim(Im(A))$, folgt, dass $rang(A)=n$.

$ii) [mm] \Rightarrow [/mm] iii)$
$rang(A)=n$ bedeutet, dass [mm] $dim(Im(L_A))=n$. [/mm] $Im(A)$ ist definiert als [mm] $$, [/mm] wobei [mm] $A_i$ [/mm] die Spaltenvektoren von $A$ sind. Da [mm] $$ [/mm] ein Erzeugendensystem mit $n$ Elementen für einen $n$-dimensionalen Vektorraum ist, ist es eine Basis für [mm] $\IR^n$. [/mm] Es ist also auch ein linear unabhängiges System, was bedeutet, dass alle Spalten von $A$ linear unabhängig sind.

$iii) [mm] \Rightarrow [/mm] i)$
Für die Spaltenvektoren von $A$ muss gelten, dass alle [mm] $b_i \in \IR$ [/mm] in der folgenden Gleichung null sein müssen:

$ [mm] b_1A_1+\ldots+b_nA_n=0$ [/mm]

[mm] $b_1,\ldots,b_n$ [/mm] sind die Koeffizienten des Vektors $b = [mm] \vektor{b_1 \\ \vdots \\ b_n}$. [/mm] D.h., dass

$ A*b=0$,

wobei $b = 0$ sein muss. Nun ist es so, dass der erste Eintrag in [mm] $A_1$, [/mm] der zweite in [mm] $A_2$ [/mm] und der $n$-te in [mm] $A_n$ [/mm] und alles dazwischen eins sein müssen, da sonst ein [mm] $b_i$ [/mm] auch ungleich null sein kann. Aus $A$ ist also durch Streichen die Einheitsmatrix [mm] $I_n$ [/mm] zu erzeugen und $A$ ist damit invertierbar.

Geht das so?

Liebe Grüße.

        
Bezug
Invertierbarkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Mi 26.11.2014
Autor: fred97


> Sei [mm]A \in M_n(\IR)[/mm]. Beweise die Gleichwertigkeit von:
>  i) [mm]A[/mm] ist invertierbar.
>  ii) [mm]rang(A) = n[/mm]
>  iii) Die Spalten von [mm]A[/mm] sind linear
> unabhängig.
>  Hallo,
>  
> ich werde [mm]i) \Rightarrow ii) \Rightarrow iii) \Rightarrow i)[/mm]
> versuchen zu beweisen.
>  
> [mm]i) \Rightarrow ii)[/mm]
>  Dass [mm]A[/mm] invertierbar ist, heißt, dass
> die lineare Abbildung [mm]L_A:\IR^n \to \IR^n[/mm] mit [mm]L_A(x)=Ax[/mm], [mm]x \in \IR^n[/mm],
> die zu der Matrix [mm]A[/mm] gehört, ebenfalls invertierbar ist.
> Diese Abbildung ist deshalb ein Isomorphismus und damit
> auch bijektiv. Aus dem Rangsatz folgt dann, dass
>  
> [mm]dim(Im(L_A)) = dim(\IR^n) = n[/mm].
>  
> Da [mm]rang(A)=dim(Im(A))[/mm], folgt, dass [mm]rang(A)=n[/mm].


O.K.


>  
> [mm]ii) \Rightarrow iii)[/mm]
>  [mm]rang(A)=n[/mm] bedeutet, dass
> [mm]dim(Im(L_A))=n[/mm]. [mm]Im(A)[/mm] ist definiert als [mm][/mm],
> wobei [mm]A_i[/mm] die Spaltenvektoren von [mm]A[/mm] sind. Da
> [mm][/mm] ein Erzeugendensystem mit [mm]n[/mm] Elementen für
> einen [mm]n[/mm]-dimensionalen Vektorraum ist, ist es eine Basis
> für [mm]\IR^n[/mm]. Es ist also auch ein linear unabhängiges
> System, was bedeutet, dass alle Spalten von [mm]A[/mm] linear
> unabhängig sind.

O.K.


>  
> [mm]iii) \Rightarrow i)[/mm]
>  Für die Spaltenvektoren von [mm]A[/mm] muss
> gelten, dass alle [mm]b_i \in \IR[/mm] in der folgenden Gleichung
> null sein müssen:
>  
> [mm]b_1A_1+\ldots+b_nA_n=0[/mm]
>  
> [mm]b_1,\ldots,b_n[/mm] sind die Koeffizienten des Vektors [mm]b = \vektor{b_1 \\ \vdots \\ b_n}[/mm].
> D.h., dass
>  
> [mm]A*b=0[/mm],
>  
> wobei [mm]b = 0[/mm] sein muss. Nun ist es so, dass der erste
> Eintrag in [mm]A_1[/mm], der zweite in [mm]A_2[/mm] und der [mm]n[/mm]-te in [mm]A_n[/mm] und
> alles dazwischen eins sein müssen,


Hä ? Da komme ich nicht mehr mit !!


> da sonst ein [mm]b_i[/mm] auch
> ungleich null sein kann. Aus [mm]A[/mm] ist also durch Streichen die
> Einheitsmatrix [mm]I_n[/mm] zu erzeugen und [mm]A[/mm] ist damit
> invertierbar.

Erkläre mir mal, was Du damit

"Aus [mm]A[/mm] ist also durch Streichen die Einheitsmatrix [mm]I_n[/mm] zu erzeugen"

meinst.

>  
> Geht das so?

[mm]iii) \Rightarrow i)[/mm] hast Du vergeigt.

FRED

>  
> Liebe Grüße.


Bezug
                
Bezug
Invertierbarkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Do 27.11.2014
Autor: MeMeansMe

Hallo,

>  
> [mm]iii) \Rightarrow i)[/mm] hast Du vergeigt.
>  

Ja, bei was zeitlichem Abstand dazwischen sehe ich das jetzt auch. Neuer Versuch:

Die Spaltenvektoren der Matrix $A$ bilden, wie ich gezeigt habe, eine Basis des [mm] $\IR^n$ [/mm] (und sind somit auch linear unabhängig). Wir können also jede Spalte [mm] $E_j$ [/mm] der Einheitsmatrix [mm] $I_n$ [/mm] ausdrücken als Linearkombination von:

[mm] $E_j [/mm] = [mm] b_{1j}A_1+\ldots+b_{nj}A_n$ [/mm]

für alle $j$. Die [mm] $b_i$'s [/mm] kommen aus einer Matrix $B [mm] \in M_n(\IR)$, [/mm] also:

$ [mm] I_n [/mm] = [mm] (A_1 \quad \cdots \quad A_n) [/mm] * [mm] \pmat{b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn}} [/mm] = A*B $

Es gibt also eine Matrix $B$, die, multipliziert mit $A$, die Einheitsmatrix ergibt. $A$ ist also invertierbar.

So akzeptabler?

Liebe Grüße.

Bezug
                        
Bezug
Invertierbarkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Do 27.11.2014
Autor: fred97


> Hallo,
>
> >  

> > [mm]iii) \Rightarrow i)[/mm] hast Du vergeigt.
>  >  
>
> Ja, bei was zeitlichem Abstand dazwischen sehe ich das
> jetzt auch. Neuer Versuch:
>  
> Die Spaltenvektoren der Matrix [mm]A[/mm] bilden, wie ich gezeigt
> habe, eine Basis des [mm]\IR^n[/mm] (und sind somit auch linear
> unabhängig). Wir können also jede Spalte [mm]E_j[/mm] der
> Einheitsmatrix [mm]I_n[/mm] ausdrücken als Linearkombination von:
>  
> [mm]E_j = b_{1j}A_1+\ldots+b_{nj}A_n[/mm]
>  
> für alle [mm]j[/mm]. Die [mm]b_i[/mm]'s kommen aus einer Matrix [mm]B \in M_n(\IR)[/mm],
> also:
>  
> [mm]I_n = (A_1 \quad \cdots \quad A_n) * \pmat{b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn}} = A*B[/mm]
>  
> Es gibt also eine Matrix [mm]B[/mm], die, multipliziert mit [mm]A[/mm], die
> Einheitsmatrix ergibt. [mm]A[/mm] ist also invertierbar.
>  
> So akzeptabler?

Ja

FRED

>  
> Liebe Grüße.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de