www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Irreduzibilität
Irreduzibilität < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzibilität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 So 11.07.2004
Autor: antimatheass

Wir haben im Studium als Irreduzibilitätskriterien das Kriterium nach Eisenstein gemacht und das Reduktionskriterium. Ich habe zwar die beiden so mehr oder weniger verstanden, nur versteh ich nicht, wann ich welches anwenden muss.... Kann mir da vielleicht jemand helfen??

Und gibt es vielleicht einen Trick oder irgendeinen Tipp, wie man am besten sehen kann, wie ein Polynom in Linearfaktoren zerfällt??

MFG

        
Bezug
Irreduzibilität: (verbessert)
Status: (Antwort) fertig Status 
Datum: 20:10 So 11.07.2004
Autor: Stefan

Liebe Anna!

Man kann nicht allgemein sagen, wann man das Eisensteinkriterium und wann man das Reduktionskriterium anwendet. Das Eisensteinkriterium kann man ja schnell überprüfen, daher sollte man damit vielleicht starten. Ist es nicht erfüllt, so heißt das ja nicht, dass das Polynom reduzibel ist. Es heißt nur, dass man nicht nachweisen konnte, dass es irreduzibel ist. Dann nimmt man sich das Reduktionsverfahren vor. Besonders einfach ist das im Falle des Ringes [mm] $\IZ[X]$, [/mm] denn dann man ja einfach modulo irgendwelcher Primzahlen reduzieren und zu [mm] $\IF_p[X]$ [/mm] übergehen.

Beispiel:

$f(X)= [mm] X^4 [/mm] + [mm] 3X^2 [/mm] + [mm] X^2 [/mm] - 2X + 1 [mm] \in \IZ[X]$ [/mm]

ist irreduzibel, da

[mm] $\bar{f}[X] [/mm] = [mm] X^4 [/mm] + [mm] X^2 [/mm] + X + [mm] \bar{1} \in \IF_3[X]$ [/mm]

irreduzibel ist.

Aber es gibt auch noch andere Irreduzibilitätskriterien, z.B. den Satz von Gauß:

Es sei $R$ ein faktorieller Ring mit dem Quotientenkörper $K$ und [mm] $N\subset [/mm] R$ eine multiplikativ abgeschlossene Teilmenge. Ist $f [mm] \in [/mm] R[X]$ ein irreduzibles Polynom vom Grad $>0$, dann ist $f$ auch in [mm] $R_N[X]$ [/mm] irreduzibel, Insbesondere ist $f$ in $K[X]$ irreduzibel.


Ein Kriterium, mit dem man sofort überprüfen kann, ob ein Polynom (über einem beliebigen faktoriellen Ring) in Linearfaktoren zerfällt, ist mir nicht bekannt.

Liebe Grüße
Stefan

Bezug
                
Bezug
Irreduzibilität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:35 So 11.07.2004
Autor: antimatheass

Alles klar, vielen Dank!! Hast mir sehr weitergeholfen!

Lieben Gruß
anna

Bezug
                
Bezug
Irreduzibilität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:32 Mo 12.07.2004
Autor: Irrlicht

Hallo Stefan,

>  
> [mm]f(X)= X^4 + 3X^2 + X^2 + X^2 - 2X + 1 \in \IZ[X][/mm]
>  
> ist irreduzibel, da
>  
> [mm]\bar{f}[X] = X^4 + X^2 + X + \bar{1} \in \IF_3[X][/mm]
>  
>
> irreduzibel ist (es besitzt ja keine Nullstelle in
> [mm]\IF_3[/mm]).


Die Aussage stimmt, deine Begründung aber nicht. :-)
[mm] \bar{f}(X) [/mm] könnte ja noch quadratische Teiler haben (was es hier nicht hat).

Zum Beispiel ist
$f(X) = [mm] X^4 [/mm] - [mm] X^2 [/mm] + 1$
in [mm] $\IF_3[X]$ [/mm] reduzibel, obwohl es keine Nullstellen hat.


Lieben Gruss,
Irrlicht

Bezug
                        
Bezug
Irreduzibilität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Mo 12.07.2004
Autor: Stefan

Ja, Danke, stimmt. [peinlich]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de