www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Irreduzibilität
Irreduzibilität < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzibilität: Aufgabe
Status: (Frage) überfällig Status 
Datum: 18:21 Do 04.01.2007
Autor: sonnenfee23

Aufgabe
Untersuchen Sie(mit Beweis) auf irreduzibilität:
(1) f(x) = [mm] x^{4}-x^{3}-9x^{2}+4x+2; [/mm] g(x) = [mm] x^{4}+2x^{3}+x^{2}+2x+1 [/mm] in [mm] \IQ[x] [/mm]
(2) f(x,y) = [mm] z^{6}+xy^{5}+2xy^{3}+2x^{2}y^{2}-x^{3}y+x^{2}+x [/mm] in [mm] \IQ[x,y] [/mm]

Hallo!

Kann mir jemand helfen? Wie gehe ich denn hier vor, v.a. was soll ich beweisen?? Wie mache ich dies dann wenn ich 2 verschiedene Variablen habe??

Also die (2) habe ich mittlerweile selbst gelös, aber bei der (1) fehlt mir jegiche idee,..

MfG SuSi

Habe dies in keinenm anderen Forum geschrieben!



        
Bezug
Irreduzibilität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:37 So 07.01.2007
Autor: felixf

Hallo sonnenfee,

> Untersuchen Sie(mit Beweis) auf irreduzibilität:
>  (1) f(x) = [mm]x^{4}-x^{3}-9x^{2}+4x+2;[/mm] g(x) =
> [mm]x^{4}+2x^{3}+x^{2}+2x+1[/mm] in [mm]\IQ[x][/mm]

das erste Polynom ist reduzibel, das zweite irreduzibel (laut Maple). Dass beide keine Nullstellen in [mm] $\IQ$ [/mm] haben sieht man schnell (es muessten schon Nullstellen in [mm] $\IZ$ [/mm] sein, und dazu kommen nur Teiler des kleinsten Koeffizienten in Frage). Wenn sie also reduzibel sind, dann muessen sie in das Produkt von zwei quadratischen Faktoren aufspalten.
Daraus erhaelst du ein Gleichungssystem in vier Unbekannten (woraus sich zwei schnell eliminieren lassen), welches beim ersten Polynom eine Loesung in [mm] $\IQ$ [/mm] hat und beim zweiten wohl nicht.

Beim ersten liefert dir das eine Faktorisierung, wenn du eine Loesung findest. Wenn du beim zweiten zeigen kannst, dass es keine Loesung gibt, bist du auch fertig. Das ist aber wohl etwas schwieriger...

Die Methode Substituieren+Eisenstein klappt bei beiden Polynomen nicht wie es aussieht. Reduktion modulo Primzahl koennte beim zweiten vielleicht helfen; modulo 2 ist es reduzibel, aber modulo 3 oder 5 hast du vielleicht Erfolg... (Dort kannst du den ggT mit [mm] $x^{3^2} [/mm] - x$ bzw. [mm] $x^{5^2} [/mm] - x$ ausrechnen, wenn sie teilerfremd sind dann ist es irreduzibel.)

LG Felix


Bezug
        
Bezug
Irreduzibilität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 07.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de