www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Irreduziblität eines Polynoms
Irreduziblität eines Polynoms < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduziblität eines Polynoms: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Mo 03.11.2008
Autor: Fry

Hallo,

versuche gerade eine Aufgabe aus einem Algebra-Buch zu knacken.
Man soll zeigen, dass [mm] X^{p}-X-1 [/mm] irreduzibel in [mm] \IF_{p}[X] [/mm] für [mm] p\in\IP [/mm] ist.
Dazu soll man sich f(X+1) anschauen und die Primfaktorzerlegung anschauen...

also [mm] f(X+1)=(X+1)^{p}-X-2 [/mm]
[mm] =X^{p}+\vektor{p \\ 1}X^{p-1}+....+\underbrace{\vektor{p \\ p-1}X - X}_{=(p-1)X} \underbrace{+\vektor{p \\ p} - 2 }_{=p-1} [/mm]

Hier könnte man ja wunderbar Eisenstein anwenden, aber [mm] \IF_{p} [/mm] besitzt ja als Körper keine Primelemente. Kann mir jemand weiterhelfen ?
Steh auf dem Schlauch. Wahrscheinlich muss ich die Aufgabe ganz anders angehen.

Gruß
Christian


        
Bezug
Irreduziblität eines Polynoms: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Mo 03.11.2008
Autor: statler

Hi,

da in [mm] F_p [/mm] p = 0 ist, ist f(X+1) gerade wieder f(X). Vermutlich muß man der Sache irgendwie anders beikommen.

Gruß
Dieter

Bezug
        
Bezug
Irreduziblität eines Polynoms: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Mo 03.11.2008
Autor: felixf

Hallo

> versuche gerade eine Aufgabe aus einem Algebra-Buch zu
> knacken.
>  Man soll zeigen, dass [mm]X^{p}-X-1[/mm] irreduzibel in [mm]\IF_{p}[X][/mm]
> für [mm]p\in\IP[/mm] ist.
>  Dazu soll man sich f(X+1) anschauen und die
> Primfaktorzerlegung anschauen...

Wird dies explizit als Hinweis gegeben?

Oder meinst du die Linearfaktorzerlegung und nicht die Primfaktorzerlegung?

Weil $f(X + 1) = f(X)$ zeigt ja, dass wenn [mm] $\alpha$ [/mm] eine Nullstelle ist, die Elemente [mm] $\{ \alpha, \alpha + 1, \dots, \alpha + p - 1 \}$ [/mm] ebenfalls Nullstellen sind, womit $f = [mm] \prod_{t \in \F_p} [/mm] (x - [mm] (\alpha [/mm] + t))$ ist.

Um zu zeigen, dass dieses Polynom irreduzibel ist, kannst du zeigen, dass die Galoisgruppe eines Zerfaellungskoerpers des Polynoms ueber [mm] $\IF_p$ [/mm] transitiv auf der Nullstellenmenge operiert. Die Galoisgruppe wird von [mm] $\varphi [/mm] : z [mm] \mapsto z^p$ [/mm] erzeugt.

Aber berechne doch mal [mm] $\varphi(\alpha)$ [/mm] fuer eine Nullstelle [mm] $\alpha$ [/mm] von dem Polynom; was kommt heraus?

LG Felix


Bezug
                
Bezug
Irreduziblität eines Polynoms: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Fr 07.11.2008
Autor: Fry

Hi Felix,

also [mm] \phi(a)=a^{p}=a, [/mm]  also Nullstelle wird auf Nullstelle abgebildet. Woher weiß ich denn das der Frobeniushomom. Erzeuger ist ? Und was bringt mir das genau ? Denn eigentlich soll ich doch zu zwei beliebigen Nullstellen a,b einen Automorphismus [mm] \phi [/mm] mit phi(a)=b finden. Bin gerade etwas verwirrt. Sorry, hab mich noch nicht so richtig intensiv mit der Galoistheorie auseinandergesetzt.

Gruß
Christian

Bezug
                        
Bezug
Irreduziblität eines Polynoms: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Sa 08.11.2008
Autor: statler

Hi Christian!

> also [mm]\phi(a)=a^{p}=a,[/mm]  also Nullstelle wird auf Nullstelle
> abgebildet.

Aber nicht so! Wenn a eine Nullstelle ist (wovon ich mal ausgehe), dann ist [mm] a^p [/mm] = a + 1. Das sagt mir gerade die zu a gehörige Gleichung.

> Woher weiß ich denn daß der Frobeniushomom.
> Erzeuger ist ?

Endliche Erweiterungen endlicher Körper sind immer galoissch mit zyklischer Galoisgruppe und dem Frobenius als einem erzeugenden Element.

> Und was bringt mir das genau ? Denn
> eigentlich soll ich doch zu zwei beliebigen Nullstellen a,b
> einen Automorphismus [mm]\phi[/mm] mit phi(a)=b finden. Bin gerade
> etwas verwirrt. Sorry, hab mich noch nicht so richtig
> intensiv mit der Galoistheorie auseinandergesetzt.

Wenn b = a+r ist, dann mußt du nur die richtige Potenz von [mm] \phi [/mm]  nehmen. Welche wohl?

Gruß aus Hamburg
Dieter

Bezug
                                
Bezug
Irreduziblität eines Polynoms: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:29 Sa 08.11.2008
Autor: Fry

Hallo,

vielen Dank für deine Antwort.
Hab alles verstanden.Das müsste dann wohl dementsprechende die rte Potenz von [mm] \varphi [/mm] sein.

LG
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de