www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Irrfahrt
Irrfahrt < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irrfahrt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 So 02.02.2014
Autor: FreddyzZz

Aufgabe
Berechnen Sie für die in 0 starende symmetrische Irrfahrt [mm] X_{n} [/mm] n [mm] \in \IZ [/mm] die Wahrscheinichkeiten [mm] P[X_{n} [/mm] = 0], n = 0,1,2....
Ist die symmetrische Irrfahrt stationär?

Hallo zusammen,

also zur b, ich weiss das die sym. Irrfahrt nicht stationär ist, weiss aber nicht genau wie ich das zeigen muss... es ist ja, da [mm] P[x_{0}] [/mm] =0] = 1 [mm] \not= [/mm] 0 = [mm] P[X_{1}=0]. [/mm] Verstehe aber nicht genau wieso es dann nicht stationär ist, stehe da irgendwie auf dem Schlauch.

Zum ersten Teil: also für n = 0 ist das 1 , für n =1 ist es 0, für n=3 => 1/2 n= 4 => 0 ... usw. Ist das so richtig? Man kann ja quasi immer nur einen Schritt vor oder zurück gehen, für n = 5 müsste es ja dann je nachdem was bei 3 war, also 1/2 * 1/2 sein?

Danke schon mal für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Irrfahrt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 So 02.02.2014
Autor: Gonozal_IX

Hiho,

>  n = 5 müsste es ja dann je nachdem was bei 3 war, also 1/2 * 1/2 sein?

korrekt, und das sollst du nun nur noch in Formeln packen.

Gruß,
Gono.

Bezug
                
Bezug
Irrfahrt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 So 02.02.2014
Autor: FreddyzZz

also für gerade n wäre [mm] P[X_{n} [/mm] = 0] = 0 und für ungerade n [mm] P[X_{n}] [/mm] = [mm] \bruch{1}{2}^{\burch{n-1}{2}} [/mm] oder?



Bezug
                        
Bezug
Irrfahrt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 03.02.2014
Autor: Gonozal_IX

Hiho,

> also für gerade n wäre [mm]P[X_{n}[/mm] = 0] = 0 und für ungerade
> n [mm]P[X_{n}][/mm] = [mm]\bruch{1}{2}^{\burch{n-1}{2}}[/mm]

Mit korrigiertem Tippfehler und damit [mm]P[X_{n} = 0] = \left(\bruch{1}{2}\right)^{\bruch{n-1}{2}}[/mm] stimmt das.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de