www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Irrfahrten
Irrfahrten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irrfahrten: Irrfahrtsparadoxon
Status: (Frage) überfällig Status 
Datum: 16:28 Fr 05.06.2009
Autor: dummchen

Aufgabe
Führt man eine Irrfahrt auf den ganzzahligen Punkten der Zahlengeraden aus, wobei man vom Ursprung ausgeht und sich jedem Schritt um eine Einheit nach links oder rechts mit gleicher Wahrscheinlichkeit und unabhängig von den vorausgehenden Schritten fortbewegt, so
gelangt man mit der Wahrscheinlichkeit 1 zum Ursprung zurück.

Es lässt sich nun folgende Frage stellen:
Wie oft wird während dieser Irrfahrt ein gegebener Punkt k berührt, bevor man zum ersten Mal den Ursprung wieder erreicht?

Man würde natürlich annehmen, dass der Punkt k seltener berührt wird, je größer der Absolutbetrag der festgehaltenen ganzen Zahl k ist, d.h. je weiter k vom Ursprung entfernt ist.

Überraschenderweise erreicht jedoch die Irrfahrt vor der ersten Rückkehr den Punkt k im Mittel einmal, egal wie groß der der Betrag von k auch sein mag.

Warum ist das so?
Wie kann ich dieses zeigen?
Gibt es dazu Literatur?

Meine Erklärung wäre, dass  Erwartungswert der durchschnittlichen Schrittzahl bis zur Rückkehr unendlich groß ist und daher genug Zeit zur Verfügung steht, um durchschnittlich einmal jeden Punkt der Zahlengerade zu erreichen.

Aber wie zeige ich das Paradoxon?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Irrfahrten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Fr 05.06.2009
Autor: rabilein1


> Man würde natürlich annehmen, dass der Punkt k seltener
> berührt wird, je größer der Absolutbetrag der
> festgehaltenen ganzen Zahl k ist, d.h. je weiter k vom
> Ursprung entfernt ist.

Und wer sagt, dass dem nicht so ist?
Wann soll denn das "Spiel" zu Ende sein? Wenn man das erste Mal wieder zum Ursprung zurück kehrt oder erst bei der unendlichen Rückkehr?

Im ersten Fall wäre nach "Links-Rechts" oder "Rechts-Links" das Spiel bereits zu Ende. Die Chance dafür ist sehr groß.

Im letzeren Fall wäre ja niemals Schluss, und dann kann man auch nicht sagen, wie oft ein Punkt berührt wurde.

>  
> Überraschenderweise erreicht jedoch die Irrfahrt vor der
> ersten Rückkehr den Punkt k im Mittel einmal, egal wie groß
> der der Betrag von k auch sein mag.

Was heißt "im Mittel"? Wie wird denn das errechnet? Um das Mittel (Durchschnitt) zu bestimmen, muss man 2 Zahlen durcheinander dividieren. Welche denn??
Vielleicht liegt das Paradoxe lediglich in der Definition von "im Mittel".


Bezug
                
Bezug
Irrfahrten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:12 Sa 06.06.2009
Autor: rabilein1


Ich habe das Eperiment mal durchgeführt:
2000 Mal bin ich zufallsbedingt einen Schritt nach links oder rechts gegangen.

Dabei kam ich 74 Mal zum Ursprung zurück.
83 Mal kam ich über die "3".
80 Mal kam ich über die "8".
72 Mal kam ich über die "10".
Und 36 Mal kam ich über die "15".

Interessant weiterhin: Die größte Entfernung vom Ursprung lag bei "23"

Aber wie gesagt: Ich hatte nur 2000 Schritte gemacht (Dann taten mir die Füße weh). Das sind jedoch nur Peanuts gegenüber dem Unendlichen.


> Was heißt "im Mittel"? Wie wird denn das errechnet?
> Um das Mittel (Durchschnitt) zu bestimmen, muss man
> 2 Zahlen durcheinander dividieren. Welche denn??

Es sind die "Zahlen" Unendlich und Unendlich, die man durcheinander dividiert.
Und was kommt da raus?  =>  EINS !!??




Bezug
        
Bezug
Irrfahrten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 13.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de