www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Isolierte Singularität
Isolierte Singularität < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isolierte Singularität: Idee
Status: (Frage) beantwortet Status 
Datum: 19:43 Do 05.02.2009
Autor: funktionentheorie

Hallo!

Eine isolierte Singulariät ist definiert folgendermassen:

z ist eine isolierte Singularität einer Funktion f wenn f in der punktierten Umgebung von z holomorph ist.

Meine Frage ist, was ist mit der Funktion f an der Stelle z. Ist sie da überhaupt definiert? Kann man sich die isolierte Singulrität als eine Lücke in dem Definitionsbereich von f vorstellen?

Vielen Dank im voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Isolierte Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 04:30 Fr 06.02.2009
Autor: felixf

Hallo

> Eine isolierte Singulariät ist definiert folgendermassen:
>  
> z ist eine isolierte Singularität einer Funktion f wenn f
> in der punktierten Umgebung von z holomorph ist.
>  
> Meine Frage ist, was ist mit der Funktion f an der Stelle
> z. Ist sie da überhaupt definiert?

Im Allgemeinen nicht. Und falls doch, so muss der Funktionswert dort ueberhaupt nichts mit dem Rest der Funktion zu tun haben.

Nimm etwa die Funktion $f : [mm] \IC \setminus \{ 0 \} \to \IC$, [/mm] $z [mm] \mapsto \frac{1}{z}$. [/mm] Sie ist in $z = 0$ nicht definiert, sonst ueberall aber schon. Also hat sie eine isolierte Singularitaet in $z = 0$. (Genauer: einen Pol erster Ordnung.)

> Kann man sich die
> isolierte Singulrität als eine Lücke in dem
> Definitionsbereich von f vorstellen?

Ja. Wobei es moeglich ist, dass die Singularitaet hebbar ist, man also den Funktionswert in dem Punkt so definieren kann, dass die Funktion auch inkl. diesem Punkt holomorph ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de