www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Isomorphie
Isomorphie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 08.11.2011
Autor: pyw

Aufgabe
Für endliche abelsche Gruppen A und B gelte [mm] A\oplus \IZ^m\cong B\oplus \IZ^n. [/mm]

Zeigen Sie, dass [mm] \IZ\cong\IZ^n [/mm] und [mm] A\cong [/mm] B.

Hallo,

bei dieser Aufgabe tue ich mich etwas schwerer.
Ich weiß, dass aus [mm] \IZ^n\cong\IZ^m [/mm] folgt m=n.

Wenn ich die beiden "Produktbestandteile" also getrennt betrachten könnte, so wäre ich schnell fertig.

Also will ich etwas in der Art zeigen, dass [mm] A\oplus\IZ^n\cong\IZ^m [/mm] nicht gelten kann, wenn A eine endliche abelsche Gruppe ist. Kann ich das damit begründen, dass [mm] \IZ^m [/mm] torsionsfrei ist und [mm] A\oplus\IZ^n\cong\IZ^m [/mm] nicht? Betrachte etwa [mm] (a,0)\in A\oplus\IZ^n\cong\IZ^m, [/mm] mit [mm] a\in [/mm] A. Dieses hat endliche Ordnung.

Hoffe auf Hilfe.

Gruß,
pyw

        
Bezug
Isomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Di 08.11.2011
Autor: felixf

Moin!

> Für endliche abelsche Gruppen A und B gelte [mm]A\oplus \IZ^m\cong B\oplus \IZ^n.[/mm]
>  
> Zeigen Sie, dass [mm]\IZ\cong\IZ^n[/mm] und [mm]A\cong[/mm] B.
>
> bei dieser Aufgabe tue ich mich etwas schwerer.
>  Ich weiß, dass aus [mm]\IZ^n\cong\IZ^m[/mm] folgt m=n.
>  
> Wenn ich die beiden "Produktbestandteile" also getrennt
> betrachten könnte, so wäre ich schnell fertig.
>  
> Also will ich etwas in der Art zeigen, dass
> [mm]A\oplus\IZ^n\cong\IZ^m[/mm] nicht gelten kann, wenn A eine
> endliche abelsche Gruppe ist. Kann ich das damit
> begründen, dass [mm]\IZ^m[/mm] torsionsfrei ist und
> [mm]A\oplus\IZ^n\cong\IZ^m[/mm] nicht? Betrachte etwa [mm](a,0)\in A\oplus\IZ^n\cong\IZ^m,[/mm]
> mit [mm]a\in[/mm] A. Dieses hat endliche Ordnung.

Das kannst du schon, aber das hilft dir bei der Gesamtaussage nur bedingt weiter.

Sei $A' := A [mm] \oplus \{ 0 \}^n \subseteq [/mm] A [mm] \oplus \IZ^n$ [/mm] und $B' := B [mm] \oplus \{ 0 \}^m \subseteq [/mm] B [mm] \oplus \IZ^m$. [/mm]

Nimm einen Isomorphismus [mm] $\phi [/mm] : A [mm] \oplus \IZ^n \to [/mm] B [mm] \oplus \IZ^m$. [/mm] Zeige, dass [mm] $\varphi(A') \subseteq [/mm] B'$ ist. Folgere mit der Symmetrie, dass [mm] $\varphi^{-1}(B') \subseteq [/mm] A'$ ist und somit [mm] $\varphi(A') [/mm] = B'$ folgt. Damit hast du $A [mm] \cong [/mm] A' [mm] \cong [/mm] B' [mm] \cong [/mm] B$.

Weiterhin bekommst du damit einen Isomorphismus $(A [mm] \oplus \IZ^n) [/mm] / A' [mm] \cong [/mm] (B [mm] \oplus \IZ^m) [/mm] / B'$. Zeige, dass $(A [mm] \oplus \IZ^n) [/mm] / A' [mm] \cong \IZ^n$ [/mm] und $(B [mm] \oplus \IZ^m) [/mm] / B' [mm] \cong \IZ^m$ [/mm] gilt.

LG Felix


Bezug
                
Bezug
Isomorphie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Di 08.11.2011
Autor: pyw


> Sei [mm]A' := A \oplus \{ 0 \}^n \subseteq A \oplus \IZ^n[/mm] und
> [mm]B' := B \oplus \{ 0 \}^m \subseteq B \oplus \IZ^m[/mm].
>  
> Nimm einen Isomorphismus [mm]\phi : A \oplus \IZ^n \to B \oplus \IZ^m[/mm].
> Zeige, dass [mm]\varphi(A') \subseteq B'[/mm] ist.

Sei [mm] z=(a,0)\in [/mm] A'. Angenommen es gilt [mm] \varphi(z)=(b,c) [/mm] mit [mm] 0\neq c\in\IZ^m. [/mm]
Dann folgt aus der Homomorphieeigenschaft des Isomorphismus:

       [mm] \varphi(nz)=(nb, [/mm] nc), [mm] n\in\IN. [/mm]

Die Elemente auf der rechten Seite sind für alle n verschieden, da [mm] c\neq0 [/mm] im torsionsfreien [mm] \IZ^m [/mm] Ordnung unendlich hat. Auf der linken Seite können jedoch nur endlich viele Argumente auftauchen, da A' endlich: Widerspruch.

Also gilt [mm] \varphi(A')\subset [/mm] B'.

> Folgere mit der Symmetrie, dass [mm]\varphi^{-1}(B') \subseteq A'[/mm] ist und somit
> [mm]\varphi(A') = B'[/mm] folgt. Damit hast du [mm]A \cong A' \cong B' \cong B[/mm].

Ok.

>  
> Weiterhin bekommst du damit einen Isomorphismus [mm](A \oplus \IZ^n) / A' \cong (B \oplus \IZ^m) / B'[/mm].
> Zeige, dass [mm](A \oplus \IZ^n) / A' \cong \IZ^n[/mm] und [mm](B \oplus \IZ^m) / B' \cong \IZ^m[/mm] gilt.

Ich zeige nur die erste Aussage (die zweite analog):
Es sei [mm] \delta:\IZ^n\to(A \oplus \IZ^n)/A', z\mapsto(1,z)A'. [/mm]
Dies ist (offensichtlich) ein Isomorphismus, da [mm] (1,z)A'=\{(a,z):a\in A'\} [/mm] alle Elemente von (A [mm] \oplus \IZ^n)/A' [/mm] sind und die Abbildung injektiv ist.
"Gefühlsmäßig" würde ich sogar behaupten, dass dieser Isomorphismus kanonisch ist.

Was meinst Du?

Danke!!

Gruß,
pyw

Bezug
                        
Bezug
Isomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Di 08.11.2011
Autor: felixf

Moin!

> > Sei [mm]A' := A \oplus \{ 0 \}^n \subseteq A \oplus \IZ^n[/mm] und
> > [mm]B' := B \oplus \{ 0 \}^m \subseteq B \oplus \IZ^m[/mm].
>  >  
> > Nimm einen Isomorphismus [mm]\phi : A \oplus \IZ^n \to B \oplus \IZ^m[/mm].
> > Zeige, dass [mm]\varphi(A') \subseteq B'[/mm] ist.
>  Sei [mm]z=(a,0)\in[/mm] A'. Angenommen es gilt [mm]\varphi(z)=(b,c)[/mm] mit
> [mm]0\neq c\in\IZ^m.[/mm]
>  Dann folgt aus der Homomorphieeigenschaft
> des Isomorphismus:
>  
> [mm]\varphi(nz)=(nb,[/mm] nc), [mm]n\in\IN.[/mm]
>  
> Die Elemente auf der rechten Seite sind für alle n
> verschieden, da [mm]c\neq0[/mm] im torsionsfreien [mm]\IZ^m[/mm] Ordnung
> unendlich hat. Auf der linken Seite können jedoch nur
> endlich viele Argumente auftauchen, da A' endlich:
> Widerspruch.

Abgesehen davon, dass du $n$ doppelt verwendet hast, ist es ok.

> Also gilt [mm]\varphi(A')\subset[/mm] B'.
>
>  > Folgere mit der Symmetrie, dass [mm]\varphi^{-1}(B') \subseteq A'[/mm]

> ist und somit
> > [mm]\varphi(A') = B'[/mm] folgt. Damit hast du [mm]A \cong A' \cong B' \cong B[/mm].
>  
> Ok.
>  >  
> > Weiterhin bekommst du damit einen Isomorphismus [mm](A \oplus \IZ^n) / A' \cong (B \oplus \IZ^m) / B'[/mm].
> > Zeige, dass [mm](A \oplus \IZ^n) / A' \cong \IZ^n[/mm] und [mm](B \oplus \IZ^m) / B' \cong \IZ^m[/mm]
> gilt.
>  
> Ich zeige nur die erste Aussage (die zweite analog):
>  Es sei [mm]\delta:\IZ^n\to(A \oplus \IZ^n)/A', z\mapsto(1,z)A'.[/mm]
>  
> Dies ist (offensichtlich) ein Isomorphismus, da
> [mm](1,z)A'=\{(a,z):a\in A'\}[/mm] alle Elemente von (A [mm]\oplus \IZ^n)/A'[/mm]
> sind und die Abbildung injektiv ist.
>  "Gefühlsmäßig" würde ich sogar behaupten, dass dieser
> Isomorphismus kanonisch ist.
>  
> Was meinst Du?

Kann man so nennen. Du kannst auch die Aussage aus dieser Aufgabe verwenden, dann bekommst du $(A [mm] \oplus \IZ^n)/A' \cong [/mm] (A/A) [mm] \oplus (\IZ^n [/mm] / [mm] \{ 0 \}^n)$. [/mm] Nun ist $A/A [mm] \cong \{ 0 \}$, $\IZ^n [/mm] / [mm] \{ 0 \}^n \cong \IZ^n$ [/mm] und somit $(A/A) [mm] \oplus (\IZ^n [/mm] / [mm] \{ 0 \}^n) \cong \{ 0 \} \oplus \IZ^n \cong \IZ^n$. [/mm]

LG Felix


Bezug
                                
Bezug
Isomorphie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Di 08.11.2011
Autor: pyw

Hallo felix,
> Abgesehen davon, dass du [mm]n[/mm] doppelt verwendet hast, ist es
> ok.

Oh, das war ein Versehen.

> Kann man so nennen. Du kannst auch die Aussage aus
> dieser Aufgabe
> verwenden, dann bekommst du [mm](A \oplus \IZ^n)/A' \cong (A/A) \oplus (\IZ^n / \{ 0 \}^n)[/mm].
> Nun ist [mm]A/A \cong \{ 0 \}[/mm], [mm]\IZ^n / \{ 0 \}^n \cong \IZ^n[/mm]
> und somit [mm](A/A) \oplus (\IZ^n / \{ 0 \}^n) \cong \{ 0 \} \oplus \IZ^n \cong \IZ^n[/mm].

Ok, danke. Das war sehr aufschlussreich! :-)

Gruß,
pyw

> LG Felix
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de