www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Isomorphismus
Isomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Mi 13.12.2006
Autor: darwin

Aufgabe
Man zeige, dass die multiplikative Gruppe der positiven reellen Zahlen isomorph zur additiven Gruppe der reellen Zahlen ist.

Hallo zusammen,

ich bin mir nichtmal sicher ob die das wirklich sind. Kann mir jemand verrate wie ich das machen soll; mir fehlt fast jede Vorstellung davon. Wenn es so ist sollt für bel. a,b [mm] \in [/mm] G gelten [mm] \varphi(ab) [/mm] = [mm] \varphi(a)\varphi(b). [/mm]
Aber wie geht's weiter.
Bitte um Hilfe.

Danke im Vorraus.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Mi 13.12.2006
Autor: Hugo_Sanchez-Vicario

Hallo Darwin,

deine Forderungen gehen nicht weit genug, denn es muss nicht nur einen Homomorphismus geben, sondern die Abbildung muss zudem noch umkehrbar und die Umkehrabbildung ebenfalls ein Homomorphismus sein.

Am besten ist, wenn du dir zu dieser Aufgabe ein paar Bücher in der Bibliothek anschaust. Alternativ kannst du dir überlegen, wo es in deiner Schulzeit eine enge Verbindung zwischen Multiplizieren und Addieren gab.

Hugo

Bezug
                
Bezug
Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:08 Do 14.12.2006
Autor: darwin

Danke für die Antwort.

Bei dem ersten Abschnitt gehe ich mit - is klar.
Der zweite bereitet mir allerdings Kopfschmerzen. Ich hab keine Ahnung was du damit meinst. Wie kann denn die Abbildung aussehen, die die Gruppen aufeinander abbildet?

Bezug
                        
Bezug
Isomorphismus: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:40 Do 14.12.2006
Autor: darwin

Ist das vielleicht eine Anspielung auf Logarithmen? Falls es so ist kann ich mir aber trotzdem keinen Reim drauf bilden. Ich komme einfach nicht auf eine sinnvolle Abbildung. Kann mir bitte nochmal jemand einen weiteren Hinweis geben.

Bezug
                        
Bezug
Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Do 14.12.2006
Autor: banachella

Hallo!

Du hattest doch eigentlich schon die richtige Idee! Der Logarithmus bildet schließlich von [mm] $\IR^+$ [/mm] nach [mm] $\IR$ [/mm] ab und ist auch invertierbar...

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de