www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Isomorphismus in R^2
Isomorphismus in R^2 < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphismus in R^2: Berechnung der Umkehrfunktion
Status: (Frage) beantwortet Status 
Datum: 17:21 Fr 03.08.2007
Autor: neuling_hier

Aufgabe
Gegeben sei folgender Isomorphismus:

  [mm] $\sigma: \IR^2 \rightarrow \IR^2 [/mm] , [mm] (\lambda_1, \lambda_2) \mapsto (\lambda_1 [/mm] + [mm] \lambda_2 [/mm] , [mm] \lambda_1 [/mm] - [mm] \lambda_2)$. [/mm]

Berechnen Sie die Umkehrfunktion [mm] $\sigma^{-1}$. [/mm]

Hallo liebes Forum,

Zu der o.g. "Aufgabe" (es ist nur ein Problem meinerseits in Aufgabenform ;-) ) habe ich mir überlegt, daß [mm] $\sigma^{-1}$ [/mm] wie folgt aussieht:

  [mm] $\sigma^{-1}: \IR^2 \rightarrow \IR^2 [/mm] , [mm] (\lambda_1, \lambda_2) \mapsto (\frac{\lambda_1 + \lambda_2}{2} [/mm] , [mm] \frac{\lambda_1 - \lambda_2}{2})$. [/mm]

Überlegt habe ich es mir aber nur an Beispielwerten (also schlecht):

  [mm] $\sigma(7,3) [/mm] = (10,4)$ und [mm] $\sigma^{-1}(10,4) [/mm] = (7,3)$,
  [mm] $\sigma(2,3) [/mm] = (5,-1)$ und [mm] $\sigma^{-1}(5,-1) [/mm] = (2,3)$,
  ... usw.

Frage: Wie rechne ich die Umkehrfunktion "allgemein" aus (ohne Beispielwerte)? Was mache ich z.B. im Fall [mm] $\sigma [/mm] : [mm] \IR^4 \rightarrow \IR^5$ [/mm] ?

Muß ich dazu ein Gleichungssystem aufstellen?

Momentan sehe ich vermutlich den Wald vor lauter Bäumen nicht, darum wäre ich Euch für eine Hilfe super dankbar !!! (Prima wäre, falls jemand mir den allgemeinen Rechenweg am Beispiel erklären könnte) :-)

        
Bezug
Isomorphismus in R^2: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Fr 03.08.2007
Autor: korbinian

Hallo
am besten stellst du den Isomorphismus durch eine Matrix (bzgl. der kanonischen Basis) dar. Dann wird die Umkehrabbildung durch die inverse Matrix dargestellt. In deinem Beispiel:
[mm] \sigma(\vektor{1 \\0})=\vektor{1 \\1} [/mm]
[mm] \sigma(\vektor{0 \\ 1})=\vektor{1 \\ -1} [/mm]
Also wird [mm] \sigma [/mm] durch die Matrix [mm] A=\pmat{ 1 & 1 \\ 1 & -1 } [/mm] dargestellt.

[mm] \sigma^{-1} [/mm] wird also durch [mm] A^{-1}=\bruch{1}{2}\pmat{ 1 & 1 \\ 1 & -1 } [/mm] dargestellt.
Da [mm] \bruch{1}{2}\pmat{ 1 & 1 \\ 1 & -1 } \vektor{\lambda_1 \\\lambda_2}=\bruch{1}{2}\vektor{\lambda_1 +\lambda_2\\\lambda_1-\lambda_2} [/mm] ist hat [mm] \sigma^{-1} [/mm] die von dir angegebene Form.

> Was mache ich z.B. im Fall [mm]\sigma : \IR^4 \rightarrow \IR^5[/mm]

Da brauchst du dir keine Sorgen machen, denn hier gibt es keinen Isomorphismus (Dimensionsgründe!). Bei gleichdimensionalen, höheren Vektorräumen kann obige Methode angewendet werden.
Gruß korbinian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de