www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Jacobi-Matrix
Jacobi-Matrix < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobi-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 So 20.06.2004
Autor: Harry

Hallo!
Ich soll die Jacobi-Matrix und die Funktionaldeterminante der folgenden Abbildung (Transformation auf 3-dimensionale Kugelkoordinaten) berechnen:

[mm]\Phi: \; \; \IR^3 \, \rightarrow \, \IR^3\\(r, \theta, \varphi) \, \mapsto \, (r \sin{\theta} \, \cos{\varphi}, r \sin{\theta} \sin{\varphi}, r \cos{\theta})[/mm]

hab aber leider keine Ahnung, wie das funktioniert. Kann mir da jemand weiterhelfen?

        
Bezug
Jacobi-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 So 20.06.2004
Autor: Matti

Hallo Harry,

ich soll das zufällig auch gerade machen. Nach der Definition, die ich kenne, enthält die Jacobi-Matrix von [mm] $\Phi$ [/mm] die partiellen Ableitungen jeder Komponentenfunktion von [mm] $\Phi$ [/mm] nach jeder Variablen. Ist also [mm] $J_\Phi(r, \theta, \varphi)$ [/mm] die gesuchte Jacobi-Matrix, so ist der Eintrag [mm] $(J_\Phi(r, \theta, \varphi))_{ij}$, [/mm] also Zeile $i$, Spalte $j$ die partielle Ableitung der $i$-ten Komponentenfunktion nach der $j$-ten Variablen, also hier z. B. [mm] $(J_\Phi(r, \theta, \varphi))_{11} [/mm] = [mm] \frac{\partial}{\partial r} [/mm] (r [mm] \sin \theta \cos \varphi)$ [/mm] (1. Komponente, 1. Variable).

Eine solche partielle Ableitung berechnest du, indem du nur diejenige Variable, nach der du ableiten willst, als veränderlich betrachtest und alle übrigen Variablen als Konstanten ansiehst, z. B. [mm] $\frac{\partial}{\partial x} (xy^2) [/mm] = [mm] y^2$ [/mm] und [mm] $\frac{\partial}{\partial y}(xy^2) [/mm] = 2xy$.

Die Funktionaldeterminante ist dann einfach die Determinante der Jacobi-Matrix (diese heißt auch Funktionalmatrix).

So sollte man es eigentlich hinbekommen. Wenn nicht, frag nochmal nach.

Gruß,
Matthias.

Bezug
                
Bezug
Jacobi-Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 So 20.06.2004
Autor: Harry

Ich wusste gar nicht, wie die Aufgabe zu lesen ist (die ganzen griechischen Buchstaben haben mich irgendwie vom wesentlichen abgelenkt), aber nach deiner Antwort ist mir jetzt alles klar. Vielen Dank!

Bezug
                
Bezug
Jacobi-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 So 20.06.2004
Autor: Harry

(Hat sich erledit)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de