www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - JacobiVerf & Ban.Fixpunktsatz
JacobiVerf & Ban.Fixpunktsatz < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

JacobiVerf & Ban.Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Do 08.01.2009
Autor: Wimme

Aufgabe
Gegeben sei das LGS Ax = b , A [mm] \in R^{n \times n}, [/mm] b [mm] \in R^{n} [/mm]
Sei A in L,R,D zerlegt mit A = L+R+D, untere Dreiecksmatrix L, obere R und Diagonalmatrix D.
Zeigen Sie mit Hilfe des Banach-Fixpunktsatzes:
Das Jacobi Verfahren konvergiert gegen die Lösung des LGS, falls die Iterationsmatrix T := [mm] D^{-1}(L+R) [/mm] das Zeilensummenkrit. erfüllt.

Hi!

Also ich habe verstanden wo die Iterationsmatrix herkommt und was das Zeilensummenkriterium ist.

Ich habe mir überlegt, dass ich das JacobiVerfahren dann als Funktion
[mm] \phi(x) [/mm] = [mm] -D^{-1}(L+R)x+b [/mm] , x [mm] \in \mathbb R^{n} [/mm] interpretieren muss.

Aber auf welchem Intervall muss ich das jetzt betrachten? (auch um zu zeigen, dass es eine Selbstabbildung ist?)

Das mit der Kontraktion würde ich dann so angehen:
| [mm] \phi(x) [/mm] - [mm] \phi(y) [/mm] | = [mm] \dots [/mm] = [mm] -D^{-1}(L+R)[x-y] [/mm]

Dann muss [mm] -D^{-1}(L+R) [/mm] < 1 gelten. Äquivalent zu L+R > - D.
Wie habe ich das jetzt zu verstehen, muss ich hier jetzt die unendlich-Norm verwenden oder so?

Danke für jede schnelle Hilfe! :)

        
Bezug
JacobiVerf & Ban.Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Fr 09.01.2009
Autor: max3000

Hi.

Der Operator ist fast richtig.
Richtig müsste es lauten:

[mm] \Phi(x):=D^{-1}*b-D^{-1}(L+R) [/mm]

Aber das ist ja egal, da der Teil mit b sich sowieso aufhebt.
Jetzt musst du natürlich Kontraktion zeigen und kommst auf

[mm] $\parallel D^{-1}(R+L)\parallel<1$ [/mm]

Die Norm dmusst du dir jetzt selber Konstruieren. Dazu sei nun mal

[mm] T:=D^{-1}(L+R) [/mm]

Wie es weiter geht hab ich selber nicht verstanden, aber habs hier in meinem Hefter stehen ^^.

Mit Ähnlichkeitstransformation lässt sich T auf Jordannormalform bringen, also gibt es P, so dass

[mm] J=P^{-1}*T*P [/mm]

Dann sei [mm] M=diag(1,\epsilon,...,\epsilon^{n-1}) [/mm] und man definiere

[mm] K=M^{-1}*T*M [/mm]

Mit [mm] S:=(P*M)^{-1} [/mm] wird nun noch eine Vektornorm definiert:

[mm] $\parallel [/mm] x [mm] \parallel_S:=\parallel Sx\parallel_\infty$ [/mm]

und damit gilt:

[mm] $\parallel [/mm] Tx [mm] \parallel_S [/mm] = [mm] \parallel [/mm] STx [mm] \parallel_\infty [/mm] = [mm] \parallel STS^{-1}Sx\parallel_\infty$ [/mm]
[mm] $\le \parallel STS^{-1}\parallel_\infty \parallel [/mm] x [mm] \parallel_S [/mm] = [mm] \parallel [/mm] K [mm] \parallel_\infty \parallel [/mm] x [mm] \parallel_S$ [/mm]
[mm] $=max(|\lambda_k|+\epsilon) \parallel [/mm] x [mm] \parallel_S [/mm] = [mm] (\rho(T)+ \epsilon) \parallel [/mm] x [mm] \parallel_S$ [/mm]

Dabei ist [mm] \rho [/mm] der Spektralradius (Für beliebige Norm im [mm] \IR^n [/mm] gilt: [mm] $\parallel [/mm] C [mm] \parallel \ge \rho(C):=(\lambda_{max}(c^Tc))^{1/2}$ [/mm]

Jedenfalls gilt dann für
[mm] $\parallel [/mm] T [mm] \parallel_*:=\parallel M^{-1}P^{-1}TPD\parallel_\infty$ [/mm] und [mm] \epsilon [/mm] so wählbar, dass [mm] $\parallel [/mm] T [mm] \parallel_*<1$. [/mm]

Wie gesagt, ich verstehs nicht wirklich.
Nur Hauptsache du hast erstmal etwas ;).

Ciao



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de