www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Jacobi Matrix und Singularität
Jacobi Matrix und Singularität < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobi Matrix und Singularität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 Mi 27.08.2008
Autor: iamfgu

Aufgabe
[mm] \begin{pmatrix}\triangle\Theta_1 \\ \triangle\Theta_2\end{pmatrix} [/mm] = [mm] \frac{1}{l_1l_2s_2}\cdot\begin{pmatrix}l_2c_{12} &l_2 s_{12}\\ -l_1c_{12}-l_1c_1 & -l_1s_{12}-l_1s_1\end{pmatrix}\cdot\begin{pmatrix}\triangle x \\ \triangle y \end{pmatrix} [/mm]

wobei c_12 = [mm] cos(\Theta_1 [/mm] + [mm] \Theta_2) [/mm] und [mm] c_1 [/mm] = [mm] cos(\Theta_1) [/mm] usw.
es sein nun der Bruch und die 2x2 Matrix = [mm] J(\Theta)^{-1} [/mm]

Wieso ist für [mm] \Theta_2 [/mm] = 0, +- 180 die Jacobi Matrix [mm] J(\Theta) [/mm] singulär ?






Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Jacobi Matrix und Singularität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Mi 27.08.2008
Autor: rainerS

Hallo!

Erstmal herzlich [willkommenmr]

> [mm]\begin{pmatrix}\triangle\Theta_1 \\ \triangle\Theta_2\end{pmatrix}[/mm]
> = [mm]\frac{1}{l_1l_2s_2}\cdot\begin{pmatrix}l_2c_{12} &l_2 s_{12}\\ -l_1c_{12}-l_1c_1 & -l_12_{12}-l_12_1\end{pmatrix}\cdot\begin{pmatrix}\triangle x \\ \triangle y \end{pmatrix}[/mm]
>  
> wobei c_12 = [mm]cos(\Theta_1[/mm] + [mm]\Theta_2)[/mm] und [mm]c_1[/mm] =
> [mm]cos(\Theta_1)[/mm] usw.
> es sein nun der Bruch und die 2x2 Matrix = [mm]J(\Theta)^{-1}[/mm]
>  Wieso ist für [mm]\Theta_2[/mm] = 0, +- 180 die Jacobi Matrix
> [mm]J(\Theta)[/mm] singulär ?

Kannst du bitte das Element rechts unten in deiner Matrix korrekt eintragen? So ergibt das keinen Sinn.

Ich bin mir nicht sicher, ob ich deine Frage verstehe. Wenn [mm] $\Theta_2=0$ [/mm] ist, ist [mm] $c_{12}=c_1$; [/mm] wenn [mm] $\Theta_2=\pm\pi$ [/mm] ist, ist [mm] $c_{12}=-c_1$. [/mm] Analog gilt dies auch für die Sinusterme.

Viele Grüße
   Rainer

Bezug
                
Bezug
Jacobi Matrix und Singularität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:45 Do 28.08.2008
Autor: iamfgu

so also ich habe die Aufgabenstellung nun korrigiert!

.. mehr als die Aufgabenstellung so wie ich sie aufgeschrieben habe, habe ich leider auch nicht.
Ich vermute halt dass irgentwie wegen der Trigonometrischen Funktionen, diese Matrix singulär wird und somit nicht mehr invertiert werden kann!
Vllt gibt es in dieser Richtung von Jemandem einen Hinweis mit dem ich in meinen Überlegungen weiterkomme

Mfg

Bezug
        
Bezug
Jacobi Matrix und Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Do 28.08.2008
Autor: angela.h.b.


> [mm]\begin{pmatrix}\triangle\Theta_1 \\ \triangle\Theta_2\end{pmatrix}[/mm]
> = [mm]\frac{1}{l_1l_2s_2}\cdot\begin{pmatrix}l_2c_{12} &l_2 s_{12}\\ -l_1c_{12}-l_1c_1 & -l_1s_{12}-l_1s_1\end{pmatrix}\cdot\begin{pmatrix}\triangle x \\ \triangle y \end{pmatrix}[/mm]
>  
> wobei c_12 = [mm]cos(\Theta_1[/mm] + [mm]\Theta_2)[/mm] und [mm]c_1[/mm] =
> [mm]cos(\Theta_1)[/mm] usw.
> es sein nun der Bruch und die 2x2 Matrix = [mm]J(\Theta)^{-1}[/mm]
>  Wieso ist für [mm]\Theta_2[/mm] = 0, +- 180 die Jacobi Matrix
> [mm]J(\Theta)[/mm] singulär ?

Hallo,

[willkommenmr].

Deine Aufgabe ist ja irgendwie so'n bißchen kryptisch.

Die [mm] l_i [/mm] sind irgendwelche reellen Konstanten?

Und [mm] s_i [/mm] ? Sinusse?

(Ich fänd's schon passend, solche "unwichtigen" Details zu verraten.)

Ich geh' jetzt davon aus, daß alles so ist, wie ich es mir zurechtgelegt habe.


Wenn [mm] \Theta_2=0° [/mm] oder [mm] \Theta_2=180° [/mm] ist, ist ja der Bruch [mm] \frac{1}{l_1l_2s_2} [/mm] überhaupt nicht definiert!!!


[Und wenn Du nur die obige Matrix ohne Bruch betrachtest:

[mm] \Theta_2=0°: c_1_2=c_1, c_2=1 [/mm] ,  [mm] s_1_2=s_1, s_2=0, [/mm] also [mm] \begin{pmatrix}l_2c_{1} &l_2 s_{1}\\ -2l_1c_{1} & -2l_1s_{1}\end{pmatrix}, [/mm] und die ist nicht invertierbar.

[mm] \Theta_2=180°: C_1_2=-c_1, c_2=-1 [/mm] ,  [mm] s_1_2=-s_1, s_2=0, [/mm] also [mm] \begin{pmatrix}-_2c_1 &-l_2s_{1}\\0 & 0\end{pmatrix}, [/mm] also nicht invertierbar.]

Gruß v. Angela



Bezug
                
Bezug
Jacobi Matrix und Singularität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:07 Do 28.08.2008
Autor: iamfgu

okay vielen Dank,
jetzt ist mir einiges klarer geworden.

.. ich dachte, dass nachdem ich die Abkürzung für den cosinus erklärt habe  das für den sinus auch klar ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de