www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Jakobi- Matrix
Jakobi- Matrix < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jakobi- Matrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:42 So 17.10.2010
Autor: perl

danke! hat sich geklärt! ziehe meine frage zurück^^
        
Bezug
Jakobi- Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 So 17.10.2010
Autor: jojohanna

> Sei [mm]f:\IR^{2}\to\IR^{2},[/mm] f(x,y) := [mm](x^{3},x^{2}+y^{2})[/mm]
>  A) bestimme [mm]f^{-1}({(1,5)}).[/mm]
>  B) zeige: f ist in allen Punten von [mm]f^{-1}({(1,5)})[/mm] lokal
> umkehrbar.
>  C) Für jeden Punkt p element von [mm]f^{-1}({(1,5)})[/mm] sei
> [mm]f^{-1}_{p}[/mm] eine lokale Umkehrabb. Berechnen sie
> [mm]J_{f^{-1}}(1,5)[/mm] für jedes p element von f{-1}({(1,5)}).
>  
>
> a) das Urbild von (1,5) ist die Mege {(1,2),(1,-2)}
>  b) Jakobi-Det. ergibt +_{-}12 [mm]\not=[/mm] 0 --> bijektiv und

> damit umkehrbar
>  
> c)
>  so hier steh ich jetz auf dem schlauch... Ich denke ich
> brauche die Formel:
>  [mm]J_{f^{-1}}(y)= J_{f}(f^{-1}(y))^{-1}[/mm]
>  wie benutze ich die
> jetzt?

[mm]J_{f^{-1}(1,-2)}(1,5)= J_{f}(f(1,-2))^{-1}[/mm]
nu... und das ist jetzt = [mm] \pmat{ 3 & 0 \\ 2 & -4 } [/mm]

--> = [mm] \pmat{ \bruch{1}{3} & 0 \\ \bruch{1}{6} & \bruch{-1}{4} } [/mm]

Für [mm] J_{f^{-1}(1,2)} [/mm] analog.

Bezug
                
Bezug
Jakobi- Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 So 17.10.2010
Autor: perl


>  > Sei [mm]f:\IR^{2}\to\IR^{2},[/mm] f(x,y) := [mm](x^{3},x^{2}+y^{2})[/mm]

>  >  A) bestimme [mm]f^{-1}({(1,5)}).[/mm]
>  >  B) zeige: f ist in allen Punten von [mm]f^{-1}({(1,5)})[/mm]
> lokal
> > umkehrbar.
>  >  C) Für jeden Punkt p element von [mm]f^{-1}({(1,5)})[/mm] sei
> > [mm]f^{-1}_{p}[/mm] eine lokale Umkehrabb. Berechnen sie
> > [mm]J_{f^{-1}}(1,5)[/mm] für jedes p element von f{-1}({(1,5)}).
>  >  
> >
> > a) das Urbild von (1,5) ist die Mege {(1,2),(1,-2)}
>  >  b) Jakobi-Det. ergibt +_{-}12 [mm]\not=[/mm] 0 --> bijektiv und

> > damit umkehrbar
>  >  
> > c)
>  >  so hier steh ich jetz auf dem schlauch... Ich denke ich
> > brauche die Formel:
>  >  [mm]J_{f^{-1}}(y)= J_{f}(f^{-1}(y))^{-1}[/mm]
>  >  wie benutze
> ich die
> > jetzt?
> [mm]J_{f^{-1}(1,-2)}(1,5)= J_{f}(f(1,-2))^{-1}[/mm]
>  nu... und das
> ist jetzt = [mm]\pmat{ 3 & 0 \\ 2 & -4 }[/mm]

das verstehe ich nicht :( kann mir das wer erklären??

> --> = [mm]\pmat{ \bruch{1}{3} & 0 \\ \bruch{1}{6} & \bruch{-1}{4} }[/mm]

auch wenn ich das oben jetzt verstehn würd... wo kommt hier das 1/6 her?

> Für [mm]J_{f^{-1}(1,2)}[/mm] analog.


Bezug
                        
Bezug
Jakobi- Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 So 17.10.2010
Autor: MathePower

Hallo perl,

> > > c)
>  >  >  so hier steh ich jetz auf dem schlauch... Ich denke
> ich
> > > brauche die Formel:
>  >  >  [mm]J_{f^{-1}}(y)= J_{f}(f^{-1}(y))^{-1}[/mm]
>  >  >  wie
> benutze
> > ich die
> > > jetzt?
> > [mm]J_{f^{-1}(1,-2)}(1,5)= J_{f}(f(1,-2))^{-1}[/mm]
>  >  nu... und
> das
> > ist jetzt = [mm]\pmat{ 3 & 0 \\ 2 & -4 }[/mm]


Das ist die Jacobi-Matrix von f an der Stelle (1,-2).


>  das verstehe ich
> nicht :( kann mir das wer erklären??
>  > --> = [mm]\pmat{ \bruch{1}{3} & 0 \\ \bruch{1}{6} & \bruch{-1}{4} }[/mm]


Und das ist die Inverse zur obigen Matrix.


>  
> auch wenn ich das oben jetzt verstehn würd... wo kommt
> hier das 1/6 her?


Die Inverse ist zunächst

[mm]-\bruch{1}{12}*\pmat{-4 & 0 \\ -2 & 3}[/mm]

Der Faktor [mm]-\bruch{1}{12}[/mm] wurde dann in die Matrix hinein multipliziert:

[mm]\pmat{\blue{-\bruch{1}{12}}\left(-4\right) & \blue{-\bruch{1}{12}}*0 \\ \blue{-\bruch{1}{12}}*\left(-2\right) & \blue{-\bruch{1}{12}}*3}[/mm]


>  > Für [mm]J_{f^{-1}(1,2)}[/mm] analog.

>


Gruss
MathePower  

Bezug
                                
Bezug
Jakobi- Matrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:47 So 17.10.2010
Autor: perl


> > > > c)
>  >  >  >  so hier steh ich jetz auf dem schlauch... Ich
> denke
> > ich
> > > > brauche die Formel:

[mm]J_{f^{-1}}(y)= J_{f}(f^{-1}(y))^{-1}[/mm]

>  >  >  >  
> wie
> > benutze
> > > ich die
> > > > jetzt?

[mm]J_{f^{-1}(1,-2)}(1,5)= J_{f}(f(1,-2))^{-1}[/mm]

>  >  >  nu...
> und
> > das
> > > ist jetzt = [mm]\pmat{ 3 & 0 \\ 2 & -4 }[/mm]
>  
>
> Das ist die Jacobi-Matrix von f an der Stelle (1,-2).

so weit klar, danke! aber ich bringe die beiden formeln nicht in Einklang mit einander....
Bei der allg. Formel ist es klar. Es geht nur um eine andere Schreibweise. Aber bei der zweiten Formel (die auf diese Aufgabe bezogen ist) steht (1,5) noch mit dabei... wieso?
kann mir wer die 2. Formel mal in worten schreiben?
heißt das dann:
die Jakobi-Matrix von [mm] f^{-1}(1,-2) [/mm] für die Abbildung (1,5)??
Ihr seid spitze, DANKE!

>
> >  das verstehe ich

> > nicht :( kann mir das wer erklären??
>  >  > --> = [mm]\pmat{ \bruch{1}{3} & 0 \\ \bruch{1}{6} & \bruch{-1}{4} }[/mm]

>  
>
> Und das ist die Inverse zur obigen Matrix.
>  
>
> >  

> > auch wenn ich das oben jetzt verstehn würd... wo kommt
> > hier das 1/6 her?
>  
>
> Die Inverse ist zunächst
>  
> [mm]-\bruch{1}{12}*\pmat{-4 & 0 \\ -2 & 3}[/mm]
>  
> Der Faktor [mm]-\bruch{1}{12}[/mm] wurde dann in die Matrix hinein
> multipliziert:
>  
> [mm]\pmat{\blue{-\bruch{1}{12}}\left(-4\right) & \blue{-\bruch{1}{12}}*0 \\ \blue{-\bruch{1}{12}}*\left(-2\right) & \blue{-\bruch{1}{12}}*3}[/mm]
>  
>
> >  > Für [mm]J_{f^{-1}(1,2)}[/mm] analog.

> >
>  
>
> Gruss

MathePower  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de