www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Jordan-Normalenform
Jordan-Normalenform < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan-Normalenform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Mo 03.09.2007
Autor: pusteblume86

Huhu! Da bin ich also scho wieder...

Es geht um folgendes: ich glaube dass das was ich jetzt frage, eigentlich ganz logisch ist;)

Also Eine nilpotente Matrix ist nur dann diagonalisierbar , wenn sie die Nullmatrix ist...

1. Wie kann man das beweisen?{klar ist, dass die nullmatrix nilpotent ist und diagonalsisierbar} mir fehlt aber der Schritt : Nilpotent=> nicht diagonalisierbar(außer die ist Nullmatrix)

zweitens: nun sucht man ja als ersatz für diagonalisierbarkeit und findet die JordanForm!
Existsiert die dann generell nur für Nilpotente Matrizen oder auch für möglcihe ander, nicht diagonalisierbare??

Ich hoffe ihr könnt mir wieder helfend zurseite stehen.

Lg Sandra



        
Bezug
Jordan-Normalenform: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mo 03.09.2007
Autor: schachuzipus

Hallo pusteblume,

zu (1)

die Aussage im ersten Satz muss doch wohl sein:

$A$ ist nilpotent und diagonalisierbar [mm] $\gdw$ $A=\mathbb{O}$ [/mm] (Nullmatrix)


Also fehlt dir die "Hinrichtung"

Sei also $A$ nilpotent mit [mm] $A^k=\mathbb{O}$ [/mm] und zudem diagonalisierbar

Dann ex. [mm] $S\in Gl_n(\IK)$ [/mm] : [mm] $(SAS^{-1})=D$ [/mm] (Diagonalmatrix)

Dann ist [mm] $(SAS^{-1})^k=(SA^kS^{-1})$ [/mm]

Mache dir klar, warum das gilt, schreibs mal aus....

[mm] $=(S\mathbb{O}S^{-1})=\mathbb{O}$ [/mm]

$A$ hat also nur den Eigenwert 0, muss also die Nullmatrix sein


zu (2)

Nein, man kann schon ein paar mehr Matrizen in JNF bringen.

Solange nur das charakteristische Polynom der Matrix [mm] \underline{\text{vollständig}} [/mm]

in Linearfaktoren zerfällt.


LG

schachuzipus

Bezug
                
Bezug
Jordan-Normalenform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Di 04.09.2007
Autor: pusteblume86

Ich kann mir nicht ganz klarmachen, warum $ [mm] (SAS^{-1})^k=(SA^kS^{-1}) [/mm] $ gilt.

Ist [mm] (SAS^{-1})^k [/mm] = [mm] S^k A^k (S^-{1})^k [/mm] ,und wenn jetzt [mm] S^k [/mm] und ( [mm] S^-1)^k [/mm] immer noch invertierbar sind, dann wären beide wieder eine Matrix in [mm] Gl_n(K). [/mm] Ich bin allerdings nicht sicher, ob das definitiv für invertierbare Matrizen gilt.(Wobei, giobt es nicht den Satz, dass das Produkt invertierbarer Matrizen invertierbar ist?)=> dann gilt es natürlich auch für Potenzen der Matrix!

Ist der Gedanke so richtig?


Lg Sandra

Bezug
                        
Bezug
Jordan-Normalenform: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Di 04.09.2007
Autor: angela.h.b.


> Ich kann mir nicht ganz klarmachen, warum
> [mm](SAS^{-1})^k=(SA^kS^{-1})[/mm] gilt.

Hallo,

[mm] (SAS^{-1})^k=SAS^{-1}SAS^{-1}SAS^{-1}vSAS^{-1}...SAS^{-1}SAS^{-1}SAS^{-1}SAS^{-1} [/mm] = [mm] SAAAA...AAAAS^{-1}= SA^kS^{-1}. [/mm]

Gruß v. Angela



Bezug
                                
Bezug
Jordan-Normalenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Di 04.09.2007
Autor: pusteblume86

Danke schön:))

Ich glaube ich lasse Mathe für heute sein..Ich bekomm ja nichts mehr hin,...


Schönen dank für die schnellen Antworten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de