www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Jordan Normalform
Jordan Normalform < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Sa 19.04.2008
Autor: Esra

Aufgabe
Welche Jordansche Normalform hat eine Matrix mit charakteristischen Polynom  [mm] (t-2)^{2}(t-5)^{3}, [/mm] wenn der Eigenraum zum Eigenwert 2 eindimensional und der Eigenraum zum Eigenwert 5 zweidimensional ist?

Hallo zusammen,

brauche bei einer Sache eure Hilfe, und zwar bei Bestimmung der Jordanschen Normalform kommt es ja auf das charakteristische Polynom an, was ja hier gegeben ist.
So demnach würde ich mein JNF aufstellen, da ich ja daraus die Eigenwerte entnehmen kann.
Jedoch habe ich dann die Eigenwerte in Jordanblock aufgestellt...es gibt aber dann mehrere Möglichkeiten sie in JNF darzustellen.

so deswegen kommt die sache dann mit dem Eigenraum und der Dimension ins Spiel...

Aber wie soll ich es berücksichtigen...
habe auch vielleicht die Aufgabenstellung nicht recht gut verstanden kann da mir jemand bitte weiterhelfen?

Danke im Vorraus.
Lg



        
Bezug
Jordan Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Sa 19.04.2008
Autor: MathePower

Hall Esra,

> Welche Jordansche Normalform hat eine Matrix mit
> charakteristischen Polynom  [mm](t-2)^{2}(t-5)^{3},[/mm] wenn der
> Eigenraum zum Eigenwert 2 eindimensional und der Eigenraum
> zum Eigenwert 5 zweidimensional ist?


>  Hallo zusammen,
>
> brauche bei einer Sache eure Hilfe, und zwar bei Bestimmung
> der Jordanschen Normalform kommt es ja auf das
> charakteristische Polynom an, was ja hier gegeben ist.
> So demnach würde ich mein JNF aufstellen, da ich ja daraus
> die Eigenwerte entnehmen kann.
>  Jedoch habe ich dann die Eigenwerte in Jordanblock
> aufgestellt...es gibt aber dann mehrere Möglichkeiten sie
> in JNF darzustellen.
>
> so deswegen kommt die sache dann mit dem Eigenraum und der
> Dimension ins Spiel...
>
> Aber wie soll ich es berücksichtigen...
>  habe auch vielleicht die Aufgabenstellung nicht recht gut
> verstanden kann da mir jemand bitte weiterhelfen?

Die Dimension des Eigenraums zu einem Eigenwert sagt aus,
wieviel Jordanblöcke es zu diesem Eigenwert gibt.

Damit solltest Du weiterkommen.

>  
> Danke im Vorraus.
>  Lg
>  
>  

Gruß
MathePower

Bezug
                
Bezug
Jordan Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:16 Do 01.05.2008
Autor: Esra

ja stimmt,

danke dir für deine Hilfe stellung..ist ja nicht so schwer dann

Lg Esra

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de