www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Jordannormalform
Jordannormalform < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordannormalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Sa 23.06.2007
Autor: Zerwas

Aufgabe
Es sei V ein 11-dimensionaler [mm] \IK-Vektorraum [/mm] und [mm] \varphi\in [/mm] Hom(V, V) mit charakteristischem Polynom [mm] p_\varphi(x) [/mm] = (x-c)^11 für ein [mm] c\in\IK. [/mm] Die Jordan-Normalform von [mm] \varphi [/mm] enthalte zwei 1-dimensionale
und je ein 2-dimensionales, ein 3-dimensionales und ein 4-dimensionales Jordankästchen.
Weiter sei   [mm] \phi [/mm] = [mm] \varphi-c*id [/mm]
und 0 < Kern [mm] (\phi) [/mm] < Kern [mm] (\phi^2) [/mm] < ... < Kern ( [mm] \phi^k) [/mm] = Kern ( [mm] \phi^{k+1}): [/mm]
Bestimmen Sie die Dimensionen von Kern [mm] (\phi^i). [/mm] (Mit Erläuterung.)

Ich kann sagen, dass k=4, da der Exponent des Hauptraumes das größte Kästchen zum jeweiligen Eigenwert bestimmt.
Aber welche Aussagen kann ich über die Dimension der Kerne treffen???

ICh habe diese Frage auf keinem andern Forum auf andern Internetseiten gestellt.

        
Bezug
Jordannormalform: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 So 24.06.2007
Autor: felixf

Hallo Zerwas!

> Es sei V ein 11-dimensionaler [mm]\IK-Vektorraum[/mm] und [mm]\varphi\in[/mm]
> Hom(V, V) mit charakteristischem Polynom [mm]p_\varphi(x)[/mm] =
> (x-c)^11 für ein [mm]c\in\IK.[/mm] Die Jordan-Normalform von [mm]\varphi[/mm]
> enthalte zwei 1-dimensionale
>  und je ein 2-dimensionales, ein 3-dimensionales und ein
> 4-dimensionales Jordankästchen.
>  Weiter sei   [mm]\phi[/mm] = [mm]\varphi-c*id[/mm]
>  und 0 < Kern [mm](\phi)[/mm] < Kern [mm](\phi^2)[/mm] < ... < Kern ( [mm]\phi^k)[/mm]
> = Kern ( [mm]\phi^{k+1}):[/mm]
>  Bestimmen Sie die Dimensionen von Kern [mm](\phi^i).[/mm] (Mit
> Erläuterung.)
>  Ich kann sagen, dass k=4, da der Exponent des Hauptraumes
> das größte Kästchen zum jeweiligen Eigenwert bestimmt.

Genau.

>  Aber welche Aussagen kann ich über die Dimension der Kerne
> treffen???

Schreib dir doch mal die Darstellungsmatrix von [mm] $\varphi$ [/mm] in Jordan-Normalform auf. Daraus erhaelst du sofort die Darstellungsmatrix von [mm] $\phi$ [/mm] und den Potenzen [mm] $\phi^2$, $\phi^3$, $\phi^4$, [/mm] etc.

Und von denen wiederum kannst du die Dimension des Kerns direkt ablesen.

LG Felix


Bezug
                
Bezug
Jordannormalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 So 24.06.2007
Autor: Zerwas

Wenn ich [mm] \varphi [/mm] in Jordannormalform aufschreibe erhalte ich die Matrix:
[mm] J=\pmat{ x & 1 & & & & & & & & & \\ & x & 1 & & & & & & & & \\ & & x & 1 & & & & & & & \\ & & & x & & & & & & & \\ & & & & x & 1 & & & & & \\ & & & & & x & 1 & & & & \\ & & & & & & x & & & & \\ & & & & & & & x & 1 & & \\ & & & & & & & & & x & 1 \\ & & & & & & & & & & x } [/mm]

Aber wie lese ich jetzt die Dimension der Kerne ab?

Bezug
                        
Bezug
Jordannormalform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 So 24.06.2007
Autor: felixf

Hallo!

> Wenn ich [mm]\varphi[/mm] in Jordannormalform aufschreibe erhalte
> ich die Matrix:
>  [mm]J=\pmat{ x & 1 & & & & & & & & & \\ & x & 1 & & & & & & & & \\ & & x & 1 & & & & & & & \\ & & & x & & & & & & & \\ & & & & x & 1 & & & & & \\ & & & & & x & 1 & & & & \\ & & & & & & x & & & & \\ & & & & & & & x & 1 & & \\ & & & & & & & & & x & 1 \\ & & & & & & & & & & x }[/mm]

Und was ist $x$?

> Aber wie lese ich jetzt die Dimension der Kerne ab?

Dazu stellst du erstmal die Matrix von [mm] $\phi$ [/mm] auf, und die von [mm] $\phi^2$, $\phi^3$, $\phi^4$. [/mm] Und dann berechnest du davon (wie man das halt bei Matrizen tut) den Kern und damit dessen Dimension.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de