www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Jordansche Normalform
Jordansche Normalform < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordansche Normalform: Frage (Theorie und Anwendung)
Status: (Frage) beantwortet Status 
Datum: 18:39 Mo 05.05.2014
Autor: Kartoffelchen

Aufgabe
Folgendes Beispiel stammt aus: Griese, Birgit u.a.: Übungsbuch zur Linearen Algebra (7. Auflage) S. 205.
Gesucht ist die Jordansche Normalform zu A. Gegen Ende habe ich ein paar Frage
______
Für die Matrix
$A = [mm] \begin{pmatrix} 0&2&2 \\ 0 &0&2 \\ 0&0&0 \end{pmatrix}$ [/mm]
ist [mm] $P_A(t) [/mm] = [mm] -t^3$. [/mm]

Einziger Eigenwert von A ist somit 0. Wir berechnen zunächst die Potenzen von A:

[mm] $A^2 [/mm] = [mm] \begin{pmatrix} 0&0&4 \\ 0&0&0 \\0&0&0 \end{pmatrix}$ [/mm]
[mm] $A^3 [/mm] = (0)$.

Daraus bestimmen wir

[mm] $U_1 [/mm] := Ker A = span (^t (1,0,0))$.
[mm] $U_2 [/mm] := Ker [mm] A^2 [/mm] = span (^t(1,0,0), ^t(0,1,0))$.

Aus den Zerlegungen

[mm] $\mathbb{R}^3 [/mm] = [mm] U_2 \bigoplus W_3 [/mm] = [mm] U_1 \bigoplus W_2 \bigoplus W_3 [/mm] = [mm] U_0 \bigoplus W_1 \bigoplus W_2 \bigoplus W_3$ [/mm]
bestimmen wir $dim [mm] W_3 [/mm] = dim [mm] W_2 [/mm] = dim [mm] W_1, [/mm] d.h. [mm] s_3 [/mm] = 1, [mm] s_2 [/mm] = [mm] s_1 [/mm] = 0$.


So, hier ist Schluss und ich komme zu meiner Frage:

Was bedeuten hier sie [mm] $s_1, s_2, s_3$ [/mm] ? Und welche Bedeutung haben sie?

        
Bezug
Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Mi 07.05.2014
Autor: angela.h.b.


> Folgendes Beispiel stammt aus: Griese, Birgit u.a.:
> Übungsbuch zur Linearen Algebra (7. Auflage) S. 205.
>  Gesucht ist die Jordansche Normalform zu A. Gegen Ende
> habe ich ein paar Frage
>  ______
>  Für die Matrix
>  [mm]A = \begin{pmatrix} 0&2&2 \\ 0 &0&2 \\ 0&0&0 \end{pmatrix}[/mm]
>  
> ist [mm]P_A(t) = -t^3[/mm].
>  
> Einziger Eigenwert von A ist somit 0. Wir berechnen
> zunächst die Potenzen von A:
>  
> [mm]A^2 = \begin{pmatrix} 0&0&4 \\ 0&0&0 \\0&0&0 \end{pmatrix}[/mm]
>  
> [mm]A^3 = (0)[/mm].
>  
> Daraus bestimmen wir
>  
> [mm]U_1 := Ker A = span (^t (1,0,0))[/mm].
>  [mm]U_2 := Ker A^2 = span (^t(1,0,0), ^t(0,1,0))[/mm].
>  
> Aus den Zerlegungen
>  
> [mm]\mathbb{R}^3 = U_2 \bigoplus W_3 = U_1 \bigoplus W_2 \bigoplus W_3 = U_0 \bigoplus W_1 \bigoplus W_2 \bigoplus W_3[/mm]
>  
> bestimmen wir [mm]dim W_3 = dim W_2 = dim W_1, d.h. s_3 = 1, s_2 = s_1 = 0[/mm].
>  
> So, hier ist Schluss und ich komme zu meiner Frage:
>  
> Was bedeuten hier sie [mm]s_1, s_2, s_3[/mm] ? Und welche Bedeutung
> haben sie?

[mm] s_1, s_2, s_3 [/mm] ist die Anzahl der Jordankastchen der Größe 1 bzw. 2 bzw. 3 im Jordanblock zum Eigenwert 0, der hier betrachtet wird,
und wenn man die kennt, kann man die JNF hinschreiben.

LG Angela



Bezug
                
Bezug
Jordansche Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 Mi 07.05.2014
Autor: Kartoffelchen

Das ist ja hervorragend. Lieben Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de