Kantenproblematik < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:48 Mo 09.12.2013 | Autor: | flo1191 |
Aufgabe | Sei $G=(V,E)$ ein Graph, in dem alle Knoten ungeraden Grad haben.
a) Sei $G$ zusätzlich ein Baum. Zeigen Sie, dass dann die Anzahl der Kanten |E| ungerade ist.
b) Finden Sie einen unzusammenhängenden Wald, der (a) nicht erfüllt, obwohl alle Knoten ungeraden Grad haben.
c) Finden Sie einen zusammenhängenden Graphen, der kein Baum ist (nicht kreisfrei) und (a) nicht erfüllt, obwohl alle Knoten ungeraden Grad haben. |
Hallo Leute
Habe mal wieder ein Problem bei dieser Aufgabe...
Und zwar ist uns nicht klar, wie wir das zeigen sollen, bzw. wie das überhaupt geht. Auch die Aufgabenstellung ansich ist uns nicht 100%ig klar :-(
Kann da jemand Starthilfe geben bitte?
Danke & Gruß,
Flo
.......
Was wir haben:
...zu a)
G ist jetzt noch ein Baum, also ein zusammenhängender, kreisfreier Graph mit m Kanten und
n Knoten und alle Knoten haben ungeraden Grad g.
Es gilt m = n - 1 und in jedem Graphen ist die Anzahl der Knoten ungeraden Grades eine
gerade Zahl. Also ist n gerade und m somit ungerade.
Zu zeigen ist, dass die Anzahl der Kanten |E| ungerade ist.
Bew. durch Widerspruch: Anzahl der Kanten |E| ist gerade.
G müsste ein Baum sein in dem alle Knoten ungeraden Grad haben, also muss die Anzahl der
Knoten ungeraden Grades eine gerade Zahl sein. Setzen wir also in m = n-1 ein gerades n ein,
ist m automatisch ungerade, was ein Widerspruch zu unserer Annahme ist.
G kann kein Baum sein mit gerader Anzahl von Kanten und alle Knoten hätten ungeraden Grad.
(Quelle: http://stubber.math-inf.uni-greifswald.de/informatik/koehler/PDF/graphen.pdf S. 35
Hilfssatz 2 )
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Mi 11.12.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|