www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Kardinalzahlen
Kardinalzahlen < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kardinalzahlen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 00:00 Mo 13.01.2014
Autor: Taro

Aufgabe
Man beweise, dass jede unendliche Kardinalzahl eine Limeszahl ist

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

dieses Aussage wäre zu zeigen
Ich weiß nicht wie verbreitet das w ist,
[mm] |\IN|=w= [/mm] kleinste unendliche Ordinalzahl und damit auch kleinste unendliche Kardinalzahl und Limeszahl

Folgenden Beweis hätte ich anzubieten:

Sei X eine beliebige abzählbar unendliche Menge
Sei a die Kardinalzahl von X
[mm] \Rightarrow [/mm] Es existiert eine bijektion [mm] f:\IN \to [/mm] X
[mm] \Rightarrow [/mm] Die beiden Mengen sind gleichmächtig
[mm] \Rightarrow [/mm] a= [mm] |X|=|\IN| [/mm] = w
[mm] \Rightarrow [/mm] a ist eine Limeszahl

Vielen Dank schon mal fürs durchlesen

        
Bezug
Kardinalzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:41 Mo 13.01.2014
Autor: UniversellesObjekt

Hallo Taro,

nein, das kann so nicht stimmen. Lies dir zunächst einmal die Definition von Kardinalzahl durch. Ich nehme an, ihr habt Kardinalzahlen als spezielle Ordinalzahlen definiert. Eine Ordinalzahl, welche kein Nachfolger einer anderen Zahl ist, heißt Limesordinalzahl. Dies ist zu zeigen für unendliche Kardinalzahlen.

Das hat nichts abzählbaren Mengen zu tun, wie das $ X $, welches du betrachtest, und auch sonst solltest du keine mehr oder weniger beliebige Mengen betrachten, sondern nur Kardinalzahlen. Da es verschiedene Möglichkeiten gibt, diese zu definieren, kann ich dir leider nicht sagen, wie ihr das gemacht habt.

In jedem Fall wird der Beweis aber vermutlich recht einfach, wenn du dir die Begrifflichkeiten erstmal klar machst.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de