www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Kategorien
Kategorien < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kategorien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Mo 09.04.2007
Autor: Monsterzicke

Aufgabe
Sei K ein Körper. Wir definieren eine Kategorie C durch:
a) Ein Objekt von C ist ein Tripel (V,W, f: V-->W), wobei V und W endlich-dimensionale K-Vektorräume sind, und f: V-->W eine K-lineare Abbildung ist.
b) Seien [mm] V_{1}, W_{1}, f_{1}: V_{1}-->W_{1}) [/mm] und [mm] (V_{2}, W_{2}, f_{2}: V_{2}-->W_{2}) [/mm] zwei Objekte von C. Ein Morphismus von [mm] V_{1}, W_{1}, f_{1}: V_{1}-->W_{1}) [/mm]  nach [mm] (V_{2}, W_{2}, f_{2}: V_{2}-->W_{2}) [/mm] ist ein Paar von K-linearebn Abbildungen (v: [mm] V_{1}--> V_{2}, [/mm] w: [mm] V_{2}--> W_{2}), [/mm] so dass das folgende Diagramm kommutativ ist:

[mm] V_{1}-------->W_{1} [/mm]  
         [mm] f_{1} [/mm]      
     v                   w
                        

[mm] V_{2}--------> W_{2} [/mm]
          [mm] f_{2} [/mm]
Nach unten gehen auch noch Pfeile, an denen stehen das v und das w, die habe ich nicht hinbekommen
c) Seien [mm] (V_{1}, W_{1}, f_{1}: V_{1}--> W_{1}) [/mm] und [mm] (V_{2}, W_{2}, f_{2}: V_{2}--> W_{2}) [/mm] zwei Objekte von C.
Zeigen Sie:
[mm] (V_{1}, W_{1}, f_{1}: V_{1}--> W_{1}) \cong (V_{2}, W_{2}, f_{2}: V_{2}--> W_{2}) \gdw dim(V_{1})= dim(V_{2}), dim(W_{1})= dim(W_{2}), rk(f_{1})= rk(f_{2}). [/mm]

Hallo allerseits!
Wir haben in der letzten Vorlesung mit Kategorien angefangen. Dabei ist mir leider kein Licht aufgegangen. Bitte um Erklärung und Ansätze für diese Aufgabe! Danke schonmal an diejenigen, die sich dazu erbarmen ;o)

        
Bezug
Kategorien: Was ist die Aufgabe?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Mo 09.04.2007
Autor: comix

Hallo,

ich sehe keine Aufgabenstellung. Was sollst Du zeigen?


Bezug
        
Bezug
Kategorien: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:42 Di 10.04.2007
Autor: Monsterzicke

kannst du mir helfen?

Bezug
                
Bezug
Kategorien: Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Di 10.04.2007
Autor: comix

Leider kann ich die Aufgabenstellung immer noch nicht erkennen. Du schreibst:

Zeigen Sie:
$ [mm] (V_{1}, W_{1}, f_{1}: V_{1}--> W_{1}) [/mm] $ und $ [mm] (V_{2}, W_{2}, f_{2}: V_{2}--> W_{2}) \gdw dim(V_{1}= dim(V_{2}, dim(W_{1}= dim(W_{2}, rk(f_{1}= rk(f_{2}. [/mm] $

Links steht keine Aussage und rechts sind die Klammern durcheinander. Kannst Du das noch präzisieren?

Bezug
        
Bezug
Kategorien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:58 Mi 11.04.2007
Autor: Monsterzicke

Sorry! Hoffe, jetzt geht es besser. so müsste es auf meinem aufgabenzettel stehen


Bezug
        
Bezug
Kategorien: Tipp
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 11.04.2007
Autor: comix

Möglicherweise sollst Du auch zeigen, dass die definierte Kategorie tatsächlich eine ist. Das lass ich hier weg.

Zunächst die Richtung [mm] \Rightarrow: [/mm]

Wenn zwei Objekte [mm] Ob_{1}:=($ V_{1}, W_{1}, f_{1}: V_{1}-->W_{1}) [/mm] $ und [mm] Ob_{2}:=$ (V_{2}, W_{2}, f_{2}: V_{2}-->W_{2}) [/mm] $ isomorph sind, dann existieren Morphismen [mm] m_{1}:=(v_{1}, w_{1}) [/mm] und [mm] m_{2}:=(v_{2}, w_{2}) [/mm] mit:

[mm] m_{2} \circ m_{1} [/mm] = [mm] 1_{Ob_{1}} [/mm]
[mm] m_{1} \circ m_{2} [/mm] = [mm] 1_{Ob_{2}} [/mm]

wobei  [mm] v_{1}: V_{1} \to V_{2} [/mm]  und [mm] w_{1}: W_{1} \to $W_{2}$, $v_{2}$: V_{2} \to V_{1} [/mm]  und [mm] w_{2}: W_{2} \to W_{1} [/mm]

Nach Definition von [mm] 1_{Ob_{i}} [/mm] (Identität in Mor [mm] (Ob_{i}, Ob_{i}) [/mm] gilt (wenn es diese Definition nicht gibt, dann musst Du es nachholen):

[mm] v_{2} \circ v_{1} [/mm] = [mm] id_{V_{1}} [/mm] (das ist die Identität im VR [mm] V_{1}) [/mm]
[mm] v_{1} \circ v_{2} [/mm] = [mm] id_{V_{2}} [/mm]

Das gleiche für die [mm] w_{i}. [/mm] Jetzt haben wir also VR-Isomorphismen und können Schlüsse daraus ziehen.
Die Aussage über die Dimensionen ist dann klar. Für [mm] rk(f_{1}) [/mm] = [mm] rk(f_{2}) [/mm] musst Du wohl die Kommutativität der Diagramme ausnutzen.

Für die andere Richtung [mm] \Leftarrow [/mm] musst Du den Isomorphimus in der Kategorie "bauen". Dazu nutzt Du aus, dass zwei VR mit gleicher Dimension isomorph sind, d.h. Du nimmst VR-Isomorphismen zwischen den relevanten VR und konstruierst einen Morphismus der Kategorie. Dann zeigst Du, dass der Morphismus ein Isomorphismus ist.

Meine Empfehlung: Male die Diagramme aufs Papier und schau Dir die Definition einer Kategorie nochmal genau an. Prüf dabei auch, ob die hier definierte Kategorie die Axiome erfüllt.

Bezug
                
Bezug
Kategorien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Mi 11.04.2007
Autor: Monsterzicke

Warum ist das mit den Dimensionen denn dann klar???

Bezug
                        
Bezug
Kategorien: VR-Isomorphismus
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 11.04.2007
Autor: comix

Für endl. dim. Vektorräume [mm] V_{1}, V_{2} [/mm] gilt:

[mm] V_{1} \cong V_{2} \gdw [/mm] dim [mm] (V_{1}) [/mm] = dim [mm] (V_{2}) [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de