www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kenngroessen von Zufallsvariab
Kenngroessen von Zufallsvariab < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kenngroessen von Zufallsvariab: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 10:22 Mo 21.05.2007
Autor: analoge2002

Aufgabe
Ein regulaerer Wuerfel wird n-mal geworfen, n [mm] \ge2. [/mm] Es bezeichne [mm] X_{l} [/mm] die Anzahl der geworfenen
Zahlen groeßer als vier bis zum (einschließlich) l-ten Wurf, 1 [mm] \le [/mm] l [mm] \le [/mm] n. Berechnen Sie
E[Xn], E[Xn(Xn − 1)], Cov[Xn−1,Xn].

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Kann mir jemand helfen die Aufgabe zu loesen. Waere echt dankbar, da ich sie morgen schon abgeben muss.
MfG

        
Bezug
Kenngroessen von Zufallsvariab: missverständliche Symbolik
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Mo 21.05.2007
Autor: DirkG

Die Frage ist schwierig zu beantworten, wenn man nicht weiß, was du mit $Xn-1$ meinst;

Ist das nun [mm] $X_n-1$, [/mm] oder doch eher [mm] $X_{n-1}$ [/mm] ... Also versieh deine Frage mal mit "ordentlichen" Indizes, dass es nicht solche Missverständnisse gibt.

Bezug
                
Bezug
Kenngroessen von Zufallsvariab: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 Mo 21.05.2007
Autor: analoge2002

Verzeihung es heisst natürlich [mm] X_{n-1} [/mm]

Bezug
                        
Bezug
Kenngroessen von Zufallsvariab: warum so schreibfaul?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:28 Mo 21.05.2007
Autor: DirkG

Eigentlich solltest du die Aufgabe editieren - es gibt dort schließlich eine Menge Indizes. Also übernehme ich das jetzt: Geht es um

Aufgabe
Ein regulaerer Wuerfel wird $n$-mal geworfen, $n [mm] \ge [/mm] 2$. Es bezeichne [mm] $X_{l}$ [/mm] die Anzahl der geworfenen Zahlen groeßer als vier bis zum (einschließlich) $l$-ten Wurf, $1 [mm] \le [/mm] l [mm] \le [/mm] n$.
Berechnen Sie [mm] $E[X_n]$, $E[X_nX_{n-1}]$, $\operatorname{Cov}[X_n,X_{n-1}]$. [/mm]



Bezug
                                
Bezug
Kenngroessen von Zufallsvariab: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Mo 21.05.2007
Autor: analoge2002

Ja genau um die aufgabe geht es. kann mir jemand dabei helfen???

Bezug
        
Bezug
Kenngroessen von Zufallsvariab: Tipps
Status: (Antwort) fertig Status 
Datum: 14:35 Di 22.05.2007
Autor: luis52

Moin analoge2002,

ich habe hier ein paar Tipps fuer dich:

1) [mm] $X_l$ [/mm] ist binomialverteilt mit $l$ und $p=1/3$
2) Damit ist [mm] $\mbox{E}[X_n]=n/3$. [/mm]
3) Schreibe [mm] $X_n=Y_n+X_{n-1}$. [/mm] Dabei bezeichnet [mm] $Y_n$ [/mm] den Ausgang im
$n$-ten Wurf, also [mm] $(Y_n=1)$, [/mm] wenn eine 5 oder 6 im $n$-ten Wurf
erscheint, anderenfalls [mm] $(Y_n=0)$. [/mm]
4) [mm] $Y_n$ [/mm] und [mm] $X_{n-1}$ [/mm] sind unabhaengig. Also ist
[mm] $\mbox{E}[X_nX_{n-1}]=\mbox{E}[Y_n]\mbox{E}[X_{n-1}]+\mbox{E}[X_{n-1}^2]$. [/mm]
5) [mm] $\mbox{E}[X_n^2]=\mbox{var}[X_n]+ \mbox{E}[X_n]^2$. [/mm]
6) [mm] $\mbox{Cov}[X_{n-1},X_n]=\mbox{Cov}[X_{n-1},Y_n+X_{n+1}]=\mbox{Cov}[X_{n-1},X_{n+1}]=\mbox{var}[X_{n-1}]$. [/mm]

lg

Luis          

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de