www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Keplersche Fassregel
Keplersche Fassregel < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Keplersche Fassregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 So 25.01.2009
Autor: penelo

hallo,
ich muss am Montag eine Gfs über die Keplersche Fassregel halten. Ich habe allerdings ein Problem bei den Auflösen einer Gleichung.

[mm] A=\bruch{b-a}{6}(2f(\bruch{a+b}{2})+f(a)+f(b))+\bruch{1}{3}(b-a)*f(\bruch{a+b}{2}) [/mm]

[mm] =\bruch{b-a}{6}(2f(\bruch{a+b}{2})+f(a)+f(b)+2*f(\bruch{a+b}{2})) [/mm]

wie komme ich denn von der ersten Gleichung zu der zweiten? Mein Lehrer meinte etwas von ausklammern aber irgendwie komm ich einfach nicht auf die Lösung.

wäre nett wenn mir jemand helfen könnte.

Penelo

        
Bezug
Keplersche Fassregel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 So 25.01.2009
Autor: XPatrickX


> hallo,

Hi

>  ich muss am Montag eine Gfs über die Keplersche Fassregel
> halten. Ich habe allerdings ein Problem bei den Auflösen
> einer Gleichung.
>  
> [mm]A=\bruch{b-a}{6}\red{(}2f(\bruch{a+b}{2})+f(a)+f(b)\red{)}+\bruch{1}{3}(b-a)*f(\bruch{a+b}{2})[/mm]

Zunächst die 1/3 zu 2/6 erweitern:

[mm] \bruch{b-a}{6}\red{(}2f(\bruch{a+b}{2})+f(a)+f(b)\red{)}+\bruch{2}{6}(b-a)*f(\bruch{a+b}{2}) [/mm]

Jetzt kannst du [mm] \bruch{b-a}{6} [/mm] ausklammern.


[mm] \bruch{b-a}{6}\red{(}2f(\bruch{a+b}{2})+f(a)+f(b)+2*f(\bruch{a+b}{2})\red{)} [/mm]


[mm]=\bruch{b-a}{6}(2f(\bruch{a+b}{2})+f(a)+f(b)+2*f(\bruch{a+b}{2}))[/mm]

>  
> wie komme ich denn von der ersten Gleichung zu der zweiten?
> Mein Lehrer meinte etwas von ausklammern aber irgendwie
> komm ich einfach nicht auf die Lösung.
>  
> wäre nett wenn mir jemand helfen könnte.
>  
> Penelo

Gruß Patrick

Bezug
                
Bezug
Keplersche Fassregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 So 25.01.2009
Autor: penelo

hi vielen Dank schon einmal,
aber wenn ich [mm] \bruch{b-a}{6} [/mm] ausklammer habe ich dann nicht:

[mm] A=\bruch{b-a}{6}*\bruch{b-a}{6}(2f(........................) [/mm]

Penelo

Bezug
                        
Bezug
Keplersche Fassregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 So 25.01.2009
Autor: XPatrickX

Nein,
du hast ja vorher:
(a-b)/6 (....) + (a-b)/6 (...)

D.h. in beiden Summanden kommt der gleiche Faktor vor, sodass du ihn aus beiden Summanden ausklammern kannst, dann hast du:

(a-b)/6 [  (...) + (...) ]

Bezug
                                
Bezug
Keplersche Fassregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 So 25.01.2009
Autor: penelo

achso,
jetzt habe ich das verstanden.

vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de