www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Kern, Bild linearer Abbildunge
Kern, Bild linearer Abbildunge < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern, Bild linearer Abbildunge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:36 Fr 16.05.2008
Autor: Palonina

Eingabefehler: "\begin" und "\end" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\begin" und "\end" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Gegeben sei die lineare Abbildung

F: \IR^5 \mapsto \IR^4, F: $ \pmat{x_1\\ \vdots \\x_5 } $ = $\begin{pmatrix}1&0&1&1&1 \\ 0&1&1&1&1 \\ 1&0&1&0&1 \\ 0&1&0&0&0 \end {pmatrix}$  $ \pmat{x_1\\ \vdots \\x_5 } $

Bestimmen Sie eine Basis von ker(F), einen Komplementärraum von ker(F) und eine Basis von im(F).

Hallo zusammen,

ich habe Probleme mit dieser Aufgabe. Den ersten Teil habe ich (hoffentlich richtig) gelöst. Dazu habe ich die Abbildungsmatrix in Zeilenstufenform gebracht und dabei die folgende Matrix erhalten:

$ \begin{pmatrix}1&0&0&0&0 \\ 0&1&0&0&0 \\ 0&0&1&0&1 \\ 0&0&0&1&0 \end {pmatrix}$

Wenn ich dies als Gleichung schreibe, erhalte ich
x_1=0, x_2=0, x_3=-x_5, x_4=0, x_5=x_5 und somit als Basis für den Kern
$ \pmat{0\\0\\-1\\0\\1 }$

Ist das so richtig?

Wie bestimme ich jetzt den Komplementärraum und die Basis des Bildes? Ich weiß nur, dass beide die Dimension 4 haben müssen.

Vielen Dank schon einmal im Voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kern, Bild linearer Abbildunge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Fr 16.05.2008
Autor: angela.h.b.


> Gegeben sei die lineare Abbildung
>  
> F: [mm]\IR^5 \mapsto \IR^4,[/mm] F: [mm]\pmat{x_1\\ \vdots \\x_5 }[/mm] =
> [mm]\begin{pmatrix}1&0&1&1&1 \\ 0&1&1&1&1 \\ 1&0&1&0&1 \\ 0&1&0&0&0 \end {pmatrix}[/mm]
>  [mm]\pmat{x_1\\ \vdots \\x_5 }[/mm]
>
> Bestimmen Sie eine Basis von ker(F), einen Komplementärraum
> von ker(F) und eine Basis von im(F).
>  
> Hallo zusammen,
>  
> ich habe Probleme mit dieser Aufgabe. Den ersten Teil habe
> ich (hoffentlich richtig) gelöst. Dazu habe ich die
> Abbildungsmatrix in Zeilenstufenform gebracht und dabei die
> folgende Matrix erhalten:
>  
> [mm]\begin{pmatrix}1&0&0&0&0 \\ 0&1&0&0&0 \\ 0&0&1&0&1 \\ 0&0&0&1&0 \end {pmatrix}[/mm]
>  
> Wenn ich dies als Gleichung schreibe, erhalte ich
>  [mm]x_1=0, x_2=0, x_3=-x_5, x_4=0, x_5=x_5[/mm] und somit als Basis
> für den Kern
> [mm]\pmat{0\\0\\-1\\0\\1 }[/mm]
>  
> Ist das so richtig?

Hallo,

ja, das ist richtig.

>
> Wie bestimme ich jetzt den Komplementärraum und die Basis
> des Bildes? Ich weiß nur, dass beide die Dimension 4 haben
> müssen.


Du weißt jetzt, daß [mm] Kernf=<\pmat{0\\0\\-1\\0\\1 }>. [/mm]

U ist ein Komplementärraum zu Kernf, wenn U folgende Eigenschaften hat:

Im Schnitt von U und Kernf  liegt nur der Nullvektor, und U+kernf [mm] =\IR^5. [/mm]

(Direkte Summe, falls Ihr das hattet.)

Damit steht der Plan: ergänze [mm] \pmat{0\\0\\-1\\0\\1 } [/mm] zu einer Basis des [mm] \IR^5, [/mm] die ergänzenden Vektoren spannen den Komplementärraum auf.

Das Bild von f wird aufgespannt von den Spalten der Matrix, ein Erzeugendensystem hast Du also bereits. Wenn Du hier eine maximale linear unabhängige teilmenge abfischst, hast Du die gesuchte Basis.

Du kannst Dich dafür Deiner Zeilenstufenform bedienen:

[mm] \begin{pmatrix}\red{1}&0&0&0&0 \\ 0&\red{1}&0&0&0 \\ 0&0&\red{1}&0&1 \\ 0&0&0&\red{1}&0 \end{pmatrix} [/mm]

Die führenden Elemente der Zeilen stehen in der 1., 2. 3. und 4.Spalte.

Daraus weiß man, daß die 1., 2. 3. und 4. Spalte der Startmatrix eine Basis des Bildes bilden.

Gruß v. Angela

>  
> Vielen Dank schon einmal im Voraus.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de