www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Kern bestimmen
Kern bestimmen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern bestimmen: Rückfrage, Idee, Tipp, Hilfe
Status: (Frage) beantwortet Status 
Datum: 13:00 Mi 11.07.2018
Autor: Dom_89

Hallo,

ich habe folgende Matrix und möchte den Kern bestimmen:

[mm] \pmat{ 1 & 0 & 0 |0\\ 0 & 0 & 0 |0\\ 0 & 0 & 1 |0} [/mm]

Als Lösung hätte ich nun angegeben:

Kern = {x = [mm] t\vektor{0 \\ 0 \\ 1}; t\in\IR [/mm] }


In der Musterlösung wird nun allerdings angegeben, dass die 2. und 3. Spalt und auch 2. und 3. Zeile getauscht werden

Hier wird dann natürlich die Lösung Kern = {x = [mm] t\vektor{0 \\ 1 \\ 0}; t\in\IR [/mm] } angegeben.

Ist das Tauschen, so wie es in der Musterlösung angegeben wird, zwingend erforderlich öde wäre auch meine Lösung richtig?

Vielen Dank für die Hilfe

        
Bezug
Kern bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Mi 11.07.2018
Autor: Diophant

Hallo,

> ich habe folgende Matrix und möchte den Kern bestimmen:

>

> [mm]\pmat{ 1 & 0 & 0 |0\\ 0 & 0 & 0 |0\\ 0 & 0 & 1 |0}[/mm]

>

> Als Lösung hätte ich nun angegeben:

>

> Kern = [mm]x = \vektor{0 \\ 0 \\ 1}; t\in\IR[/mm]

>
>

Und wie kommst du darauf? Das ist falsch, da braucht man nicht eine Zeile zu rechnen, um das zu erkennen.

> In der Musterlösung wird nun allerdings angegeben, dass
> die 2. und 3. Spalt und auch 2. und 3. Zeile getauscht
> werden

>

> Hier wird dann natürlich die Lösung Kern = x =
> [mm]t\vektor{0 \\ 1 \\ 0}; t\in\IR[/mm] angegeben.

>

> Ist das Tauschen, so wie es in der Musterlösung angegeben
> wird, zwingend erforderlich öde wäre auch meine Lösung
> richtig?

Ich weiß nicht, was du mit dem Zeilen- und Spaltentausch hier meinst, aber das ist auch völlig unnötig. Der Kern einer Matrix A ist die Lösungsmenge des linearen Gleichungssystems

[mm]A*x=0[/mm]

Wenn du das hier ausschreibst, heißt es so:

[mm]\begin{aligned} x_1+0+0&=0\\ 0+0+0&=0\\ 0+0+x_3&=0 \end{aligned}[/mm]

In diesem LGS ist die zweite Zeile beliebig, die erste und die dritte Zeile stellen bereits Lösungen für die Varaiblen [mm] x_1 [/mm] und [mm] x_3 [/mm] dar. Also ist [mm] x_2 [/mm] beliebig, [mm] x_1 [/mm] und [mm] x_3 [/mm] sind gleich Null und der Kern ist der aus der Musterlösung.

Und bitte nimm es mir nicht krumm: aber eine solche Frage, also die, ob deine Lösung auch richtig sei, die kann man nur stellen, wenn man keine Ahnung von der zugrundeliegenden Definition hat. Dann macht es aber keinen Sinn, Aufgaben zu rechnen sondern dann sollte man sich mit den notwendigen Definitionen und Sätzen beschäftigen mit dem Ziel, sie zu verstehen oder sie sich zumindest einzuprägen.


Gruß, Diophant

Bezug
                
Bezug
Kern bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Mi 11.07.2018
Autor: Dom_89

Vielen Dank für die Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 41m 5. Gooly
LatÜbers/ablativus con infinitivo
Status vor 2h 27m 1. Gooly
UStoc/Behandlung von Ausreißern
Status vor 5h 49m 4. fred97
UAnaSon/Substitutuin, Partielle Integr
Status vor 6h 16m 2. fred97
MSons/Kettenregel
Status vor 10h 14m 2. fred97
MSons/Addition u subtraktion brüche
^ Seitenanfang ^
www.vorhilfe.de