www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Kern bestimmen
Kern bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern bestimmen: idee
Status: (Frage) beantwortet Status 
Datum: 10:47 Mo 05.04.2010
Autor: grafzahl123

Aufgabe
geg. A= [mm] \begin{pmatrix} 1 & 3 & 1 \\ 2 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix} [/mm]
nun soll der kern von A bestimmt werden.

ich habe die matrix
[mm] \begin{pmatrix} 1 & 3 & 1 \\ 2 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix} [/mm]
mit gauß soweit umgeformt, dass folgendes rauskommt:
[mm] \begin{pmatrix} 1 & 3 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix} [/mm]
weiter kann man die matrix ja nicht auf zeilenstufen form bringen. ich dachte es gibt da diese "-1 trick regel" (weiß leider nicht wie die heißt), bei der man in der hauptdiagonalen alle nullen durch -1 ersetzt und somit den kern ablesen kann.
das würde hier ja folgendes bedeuten:
[mm] \begin{pmatrix} 1 & 3 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix} [/mm]
=> Ker(A)=   [mm] \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} [/mm]
wenn ich das allerdings überprüfe und A*ker(A) rechne kommt nicht (0,0,0) raus.

wenn ich aber die mit gauß umgeformte matrix nehme und sie mit (0,0,0) gleich setzt erhalte ich folgenden vektor als kern: ker(A)=(-5,1,2)

was ist jetzt richtig und warum geht das mit dem "-1 trick" nicht?

danke schon mal im voraus für die hilfe.

ich habe diese frage in keinem anderen forum gestellt.

        
Bezug
Kern bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Mo 05.04.2010
Autor: zahllos

Hallo,

der "-1 Trick" sagt mir gar nichts.
Aber wenn du deine umgeformte Matrix anschaust, siehst du, dass nur [mm] x_3 [/mm] frei wählbar ist, d.h. der Kern ist eindimensional. Setzt du z.B. [mm] x_3=t [/mm] so kannst du die zwei Gleichung nach [mm] x_2 [/mm] und die erste nach [mm] x_1 [/mm] auflösen.
(Ergebnis: [mm] x_2=\frac{1}{2}t [/mm] und [mm] x_1=-\frac{5}{2}t [/mm] )
D.h. der Vektor [mm] \vektor{-\frac{5}{2} \\ \frac{1}{2} \\ 1} [/mm] liegt im Kern und eine (einfache) Basis des Kerns ist z.B. [mm] \vektor{-5 \\ 1 \\ 2} [/mm]

Bezug
        
Bezug
Kern bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Mo 05.04.2010
Autor: angela.h.b.


> geg. A= [mm]\begin{pmatrix} 1 & 3 & 1 \\ 2 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix}[/mm]
>  
> nun soll der kern von A bestimmt werden.
>  ich habe die matrix
> [mm]\begin{pmatrix} 1 & 3 & 1 \\ 2 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix}[/mm]
>  
> mit gauß soweit umgeformt, dass folgendes rauskommt:
>   [mm]\begin{pmatrix} 1 & 3 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix}[/mm]
>  

>  warum geht das mit dem "-1 trick"
> nicht?

Hallo,

um den -1-Trick anzuwenden, muß die Matrix in reduzierter (!) Zeilenstufenform vorliegen, also mit Einsen als führende Elemente der Nichtnullzeilen und mit Nullen über und unter diesen:

[mm] \begin{pmatrix} 1 & 3 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix} [/mm] --> [mm] \begin{pmatrix} 1& 0& \bruch{5}{2} \\ 0 & 1&- \bruch{1}{2} \\ 0 & 0 & 0 \end{pmatrix}, [/mm]

und nun klappt auch der -1-Trick.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de