www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Kern einer Abbildung
Kern einer Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern einer Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Mi 04.10.2006
Autor: Kochi

Hallo,

ich suche eine sinnvolle und einfache Definition für den "Kern einer Abbildung". Ich kann leider gar nichts damit anfangen. Es wäre schön, wenn es mir jemand (wie für einen Studienanfänger) erklären könnte.

Die Erklärung bei Wikipepia hat auch nicht geholfen...

MfG

Kochi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Kern einer Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mi 04.10.2006
Autor: DaMenge

Hi,

dann versuche ich mich mal:
also per Definition ist der Kern der Abbildung [mm] $f:V\mapsto [/mm] W$ derjenige Unterraum von V, der auf [mm] $0_W$ [/mm] (also die Null in W) abgebildet wird.
Man muss sich hier vor allem einmal klar machen, dass es wirklich immer ein ganzer Unterraum ist, denn [mm] $0_V$ [/mm] wird ja immer auf [mm] $0_W$ [/mm] abgebildet, also ist [mm] $0_V$ [/mm] immer im Kern !

Ja, was das jetzt bedeutet ist ne ganz andere Geschichte - es ist ja nicht gerade so, als wenn man sich alle Vektorräume V und W vorstellen könnte, oder?

Nimm mal eine vorstellbare Abbildung: [mm] $f:\IR^2\mapsto \IR$ [/mm] mittels $f(x,y)=x$
also alle Punkte werden auf die x-Achse projeziert - was ist dann der Kern?
Der Kern ist dann das Urbild (nicht umkehrabbildung!!) [mm] $f^{-1}(0)$. [/mm]
Aber welche Punkte aus [mm] $\IR^2$ [/mm] werden denn auf 0 projeziert?
Na alle Punkte der Form (0,y) - also ist der Kern gerade die y-Achse
(dieses Beispiel kann man sich mit beliebigen Projektionsrichtungen vorstellen auch nicht notwendig senkrecht zu den Achsen)

Abbildungen werden ja meist als Matrizen dargestellt und die Berechnung des Kerns ist dann die Lösung des entspr. homogenen Gleichungssystems.
Schau mal hier:MBUniMatheFAQ
da sind links zur berechnung von kern und bild und so..

viele Grüße
DaMenge


Bezug
                
Bezug
Kern einer Abbildung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:57 Do 05.10.2006
Autor: Kochi

Super, wir haben es dann endlich mal verstanden!

Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de